2019-05-27 00:29:43 -07:00
|
|
|
#include <sys/sysmacros.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <stdio.h>
|
2020-05-03 22:49:54 -07:00
|
|
|
#include <libgen.h>
|
2019-07-01 22:58:19 -07:00
|
|
|
#include <vector>
|
2019-05-27 00:29:43 -07:00
|
|
|
|
2020-03-09 01:50:30 -07:00
|
|
|
#include <utils.hpp>
|
|
|
|
#include <selinux.hpp>
|
|
|
|
#include <magisk.hpp>
|
2019-05-27 00:29:43 -07:00
|
|
|
|
2020-03-09 01:50:30 -07:00
|
|
|
#include "init.hpp"
|
2019-05-27 00:29:43 -07:00
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
2020-09-23 16:18:51 -05:00
|
|
|
static string rtrim(string &&str) {
|
|
|
|
// Trim space, newline, and null byte from end of string
|
|
|
|
while (memchr(" \n\r", str[str.length() - 1], 4))
|
|
|
|
str.pop_back();
|
|
|
|
return std::move(str);
|
|
|
|
}
|
|
|
|
|
2019-05-27 02:55:46 -07:00
|
|
|
struct devinfo {
|
|
|
|
int major;
|
|
|
|
int minor;
|
|
|
|
char devname[32];
|
|
|
|
char partname[32];
|
2020-09-23 16:18:51 -05:00
|
|
|
char dmname[32];
|
2019-05-27 02:55:46 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
static vector<devinfo> dev_list;
|
|
|
|
|
|
|
|
static void parse_device(devinfo *dev, const char *uevent) {
|
2019-05-27 00:29:43 -07:00
|
|
|
dev->partname[0] = '\0';
|
2019-05-27 02:55:46 -07:00
|
|
|
parse_prop_file(uevent, [=](string_view key, string_view value) -> bool {
|
|
|
|
if (key == "MAJOR")
|
2019-12-05 16:29:45 -05:00
|
|
|
dev->major = parse_int(value.data());
|
2019-05-27 02:55:46 -07:00
|
|
|
else if (key == "MINOR")
|
2019-12-05 16:29:45 -05:00
|
|
|
dev->minor = parse_int(value.data());
|
2019-05-27 02:55:46 -07:00
|
|
|
else if (key == "DEVNAME")
|
|
|
|
strcpy(dev->devname, value.data());
|
|
|
|
else if (key == "PARTNAME")
|
|
|
|
strcpy(dev->partname, value.data());
|
2019-05-27 00:29:43 -07:00
|
|
|
|
2019-05-27 02:55:46 -07:00
|
|
|
return true;
|
|
|
|
});
|
|
|
|
}
|
2019-05-27 00:29:43 -07:00
|
|
|
|
|
|
|
static void collect_devices() {
|
|
|
|
char path[128];
|
2019-12-05 17:18:23 -05:00
|
|
|
devinfo dev{};
|
2019-12-13 00:37:06 -05:00
|
|
|
if (auto dir = xopen_dir("/sys/dev/block"); dir) {
|
|
|
|
for (dirent *entry; (entry = readdir(dir.get()));) {
|
|
|
|
if (entry->d_name == "."sv || entry->d_name == ".."sv)
|
|
|
|
continue;
|
|
|
|
sprintf(path, "/sys/dev/block/%s/uevent", entry->d_name);
|
|
|
|
parse_device(&dev, path);
|
2020-09-23 16:18:51 -05:00
|
|
|
sprintf(path, "/sys/dev/block/%s/dm/name", entry->d_name);
|
|
|
|
if (access(path, F_OK) == 0) {
|
|
|
|
auto name = rtrim(full_read(path));
|
2020-10-28 04:17:34 -07:00
|
|
|
strcpy(dev.dmname, name.data());
|
2020-09-23 16:18:51 -05:00
|
|
|
}
|
2019-12-13 00:37:06 -05:00
|
|
|
dev_list.push_back(dev);
|
|
|
|
}
|
2019-05-27 00:29:43 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-05-03 22:49:54 -07:00
|
|
|
static struct {
|
|
|
|
char partname[32];
|
|
|
|
char block_dev[64];
|
|
|
|
} blk_info;
|
|
|
|
|
2020-10-28 04:17:34 -07:00
|
|
|
static int64_t setup_block(bool write_block) {
|
2019-05-27 00:29:43 -07:00
|
|
|
if (dev_list.empty())
|
|
|
|
collect_devices();
|
2019-12-05 17:18:23 -05:00
|
|
|
xmkdir("/dev", 0755);
|
2019-12-09 02:44:49 -05:00
|
|
|
xmkdir("/dev/block", 0755);
|
2019-12-05 17:18:23 -05:00
|
|
|
|
|
|
|
for (int tries = 0; tries < 3; ++tries) {
|
2019-05-27 15:01:49 -07:00
|
|
|
for (auto &dev : dev_list) {
|
2020-10-28 04:17:34 -07:00
|
|
|
if (strcasecmp(dev.partname, blk_info.partname) == 0)
|
2020-05-03 22:49:54 -07:00
|
|
|
LOGD("Setup %s: [%s] (%d, %d)\n", dev.partname, dev.devname, dev.major, dev.minor);
|
2020-10-28 04:17:34 -07:00
|
|
|
else if (strcasecmp(dev.dmname, blk_info.partname) == 0)
|
2020-09-23 16:18:51 -05:00
|
|
|
LOGD("Setup %s: [%s] (%d, %d)\n", dev.dmname, dev.devname, dev.major, dev.minor);
|
2020-10-28 04:17:34 -07:00
|
|
|
else
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (write_block) {
|
|
|
|
sprintf(blk_info.block_dev, "/dev/block/%s", dev.devname);
|
2019-05-27 15:01:49 -07:00
|
|
|
}
|
2020-10-28 04:17:34 -07:00
|
|
|
dev_t rdev = makedev(dev.major, dev.minor);
|
|
|
|
mknod(blk_info.block_dev, S_IFBLK | 0600, rdev);
|
|
|
|
return rdev;
|
2019-05-27 00:29:43 -07:00
|
|
|
}
|
2019-05-27 15:01:49 -07:00
|
|
|
// Wait 10ms and try again
|
|
|
|
usleep(10000);
|
|
|
|
dev_list.clear();
|
|
|
|
collect_devices();
|
2019-05-27 00:29:43 -07:00
|
|
|
}
|
2019-12-05 17:18:23 -05:00
|
|
|
|
|
|
|
// The requested partname does not exist
|
|
|
|
return -1;
|
2019-05-27 00:29:43 -07:00
|
|
|
}
|
|
|
|
|
2019-06-30 11:39:13 -07:00
|
|
|
static bool is_lnk(const char *name) {
|
|
|
|
struct stat st;
|
|
|
|
if (lstat(name, &st))
|
|
|
|
return false;
|
|
|
|
return S_ISLNK(st.st_mode);
|
|
|
|
}
|
|
|
|
|
2020-05-03 22:49:54 -07:00
|
|
|
#define read_info(val) \
|
|
|
|
if (access(#val, F_OK) == 0) {\
|
|
|
|
entry.val = rtrim(full_read(#val)); \
|
|
|
|
}
|
|
|
|
|
Force init to load fstab from file in 2SI
Patching DTBs is proven to be difficult and problematic as there are
tons of different formats out there. Adding support for all the formats
in magiskboot has been quite an headache in the past year, and it still
definitely does not cover all possible cases of them out there.
There is another issue: fake dt fstabs. Some super old devices do not
have device trees in their boot images, so some custom ROM developers
had came up with a "genius" solution: hardcode fstab entries directly
in the kernel source code and create fake device tree nodes even if
Android 10+ init can graciously take fstab files instead (-_-) 。。。
And there is YET another issue: DTBs are not always in boot images!
Google is crazy enough to litter DTBs all over the place, it is like
they cannot make up their minds (duh). This means the dt fstabs can be
either concatnated after the kernel (1), in the DTB partition (2), in
the DTBO partition (3), in the recovery_dtbo section in boot images (4),
or in the dtb section in boot images (5). FIVE f**king places, how can
anyone keep up with that!
With Android 10+ that uses 2 stage inits, it is crutual for Magisk to
be able to modify fstab mount points in order to let the original init
mount partitions for us, but NOT switch root and continue booting. For
devices using dt for early mount fstab, we used to patch the DTB at
install time with magiskboot. However these changes are permanent and
cannot be restored back at reinstallation.
With this commit, Magisk will read dt fstabs and write them to ramdisk
at boot time. And in that case, the init binary will also be patched
to force it to NEVER use fstabs in device-tree. By doing so, we can
unify ramdisk based 2SI fstab patching as basically we are just patching
fstab files. This also means we can manipulate fstab whatever Magisk
needs in the future without the need to going through the headache that
is patching DTBs at installation.
2020-05-04 02:21:51 -07:00
|
|
|
void BaseInit::read_dt_fstab(vector<fstab_entry> &fstab) {
|
2020-05-03 22:49:54 -07:00
|
|
|
if (access(cmd->dt_dir, F_OK) != 0)
|
|
|
|
return;
|
Force init to load fstab from file in 2SI
Patching DTBs is proven to be difficult and problematic as there are
tons of different formats out there. Adding support for all the formats
in magiskboot has been quite an headache in the past year, and it still
definitely does not cover all possible cases of them out there.
There is another issue: fake dt fstabs. Some super old devices do not
have device trees in their boot images, so some custom ROM developers
had came up with a "genius" solution: hardcode fstab entries directly
in the kernel source code and create fake device tree nodes even if
Android 10+ init can graciously take fstab files instead (-_-) 。。。
And there is YET another issue: DTBs are not always in boot images!
Google is crazy enough to litter DTBs all over the place, it is like
they cannot make up their minds (duh). This means the dt fstabs can be
either concatnated after the kernel (1), in the DTB partition (2), in
the DTBO partition (3), in the recovery_dtbo section in boot images (4),
or in the dtb section in boot images (5). FIVE f**king places, how can
anyone keep up with that!
With Android 10+ that uses 2 stage inits, it is crutual for Magisk to
be able to modify fstab mount points in order to let the original init
mount partitions for us, but NOT switch root and continue booting. For
devices using dt for early mount fstab, we used to patch the DTB at
install time with magiskboot. However these changes are permanent and
cannot be restored back at reinstallation.
With this commit, Magisk will read dt fstabs and write them to ramdisk
at boot time. And in that case, the init binary will also be patched
to force it to NEVER use fstabs in device-tree. By doing so, we can
unify ramdisk based 2SI fstab patching as basically we are just patching
fstab files. This also means we can manipulate fstab whatever Magisk
needs in the future without the need to going through the headache that
is patching DTBs at installation.
2020-05-04 02:21:51 -07:00
|
|
|
|
|
|
|
char cwd[128];
|
|
|
|
getcwd(cwd, sizeof(cwd));
|
2020-05-03 22:49:54 -07:00
|
|
|
chdir(cmd->dt_dir);
|
Force init to load fstab from file in 2SI
Patching DTBs is proven to be difficult and problematic as there are
tons of different formats out there. Adding support for all the formats
in magiskboot has been quite an headache in the past year, and it still
definitely does not cover all possible cases of them out there.
There is another issue: fake dt fstabs. Some super old devices do not
have device trees in their boot images, so some custom ROM developers
had came up with a "genius" solution: hardcode fstab entries directly
in the kernel source code and create fake device tree nodes even if
Android 10+ init can graciously take fstab files instead (-_-) 。。。
And there is YET another issue: DTBs are not always in boot images!
Google is crazy enough to litter DTBs all over the place, it is like
they cannot make up their minds (duh). This means the dt fstabs can be
either concatnated after the kernel (1), in the DTB partition (2), in
the DTBO partition (3), in the recovery_dtbo section in boot images (4),
or in the dtb section in boot images (5). FIVE f**king places, how can
anyone keep up with that!
With Android 10+ that uses 2 stage inits, it is crutual for Magisk to
be able to modify fstab mount points in order to let the original init
mount partitions for us, but NOT switch root and continue booting. For
devices using dt for early mount fstab, we used to patch the DTB at
install time with magiskboot. However these changes are permanent and
cannot be restored back at reinstallation.
With this commit, Magisk will read dt fstabs and write them to ramdisk
at boot time. And in that case, the init binary will also be patched
to force it to NEVER use fstabs in device-tree. By doing so, we can
unify ramdisk based 2SI fstab patching as basically we are just patching
fstab files. This also means we can manipulate fstab whatever Magisk
needs in the future without the need to going through the headache that
is patching DTBs at installation.
2020-05-04 02:21:51 -07:00
|
|
|
run_finally cd([&]{ chdir(cwd); });
|
2020-05-03 22:49:54 -07:00
|
|
|
|
|
|
|
if (access("fstab", F_OK) != 0)
|
|
|
|
return;
|
|
|
|
chdir("fstab");
|
|
|
|
|
Force init to load fstab from file in 2SI
Patching DTBs is proven to be difficult and problematic as there are
tons of different formats out there. Adding support for all the formats
in magiskboot has been quite an headache in the past year, and it still
definitely does not cover all possible cases of them out there.
There is another issue: fake dt fstabs. Some super old devices do not
have device trees in their boot images, so some custom ROM developers
had came up with a "genius" solution: hardcode fstab entries directly
in the kernel source code and create fake device tree nodes even if
Android 10+ init can graciously take fstab files instead (-_-) 。。。
And there is YET another issue: DTBs are not always in boot images!
Google is crazy enough to litter DTBs all over the place, it is like
they cannot make up their minds (duh). This means the dt fstabs can be
either concatnated after the kernel (1), in the DTB partition (2), in
the DTBO partition (3), in the recovery_dtbo section in boot images (4),
or in the dtb section in boot images (5). FIVE f**king places, how can
anyone keep up with that!
With Android 10+ that uses 2 stage inits, it is crutual for Magisk to
be able to modify fstab mount points in order to let the original init
mount partitions for us, but NOT switch root and continue booting. For
devices using dt for early mount fstab, we used to patch the DTB at
install time with magiskboot. However these changes are permanent and
cannot be restored back at reinstallation.
With this commit, Magisk will read dt fstabs and write them to ramdisk
at boot time. And in that case, the init binary will also be patched
to force it to NEVER use fstabs in device-tree. By doing so, we can
unify ramdisk based 2SI fstab patching as basically we are just patching
fstab files. This also means we can manipulate fstab whatever Magisk
needs in the future without the need to going through the headache that
is patching DTBs at installation.
2020-05-04 02:21:51 -07:00
|
|
|
// Make sure dt fstab is enabled
|
|
|
|
if (access("status", F_OK) == 0) {
|
|
|
|
auto status = rtrim(full_read("status"));
|
|
|
|
if (status != "okay" && status != "ok")
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2020-05-03 22:49:54 -07:00
|
|
|
auto dir = xopen_dir(".");
|
|
|
|
for (dirent *dp; (dp = xreaddir(dir.get()));) {
|
|
|
|
if (dp->d_type != DT_DIR)
|
|
|
|
continue;
|
|
|
|
chdir(dp->d_name);
|
|
|
|
run_finally f([]{ chdir(".."); });
|
|
|
|
|
|
|
|
if (access("status", F_OK) == 0) {
|
|
|
|
auto status = rtrim(full_read("status"));
|
|
|
|
if (status != "okay" && status != "ok")
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
fstab_entry entry;
|
|
|
|
|
|
|
|
read_info(dev);
|
|
|
|
read_info(mnt_point) else {
|
|
|
|
entry.mnt_point = "/";
|
|
|
|
entry.mnt_point += dp->d_name;
|
2019-05-27 00:29:43 -07:00
|
|
|
}
|
2020-05-03 22:49:54 -07:00
|
|
|
read_info(type);
|
|
|
|
read_info(mnt_flags);
|
|
|
|
read_info(fsmgr_flags);
|
|
|
|
|
Force init to load fstab from file in 2SI
Patching DTBs is proven to be difficult and problematic as there are
tons of different formats out there. Adding support for all the formats
in magiskboot has been quite an headache in the past year, and it still
definitely does not cover all possible cases of them out there.
There is another issue: fake dt fstabs. Some super old devices do not
have device trees in their boot images, so some custom ROM developers
had came up with a "genius" solution: hardcode fstab entries directly
in the kernel source code and create fake device tree nodes even if
Android 10+ init can graciously take fstab files instead (-_-) 。。。
And there is YET another issue: DTBs are not always in boot images!
Google is crazy enough to litter DTBs all over the place, it is like
they cannot make up their minds (duh). This means the dt fstabs can be
either concatnated after the kernel (1), in the DTB partition (2), in
the DTBO partition (3), in the recovery_dtbo section in boot images (4),
or in the dtb section in boot images (5). FIVE f**king places, how can
anyone keep up with that!
With Android 10+ that uses 2 stage inits, it is crutual for Magisk to
be able to modify fstab mount points in order to let the original init
mount partitions for us, but NOT switch root and continue booting. For
devices using dt for early mount fstab, we used to patch the DTB at
install time with magiskboot. However these changes are permanent and
cannot be restored back at reinstallation.
With this commit, Magisk will read dt fstabs and write them to ramdisk
at boot time. And in that case, the init binary will also be patched
to force it to NEVER use fstabs in device-tree. By doing so, we can
unify ramdisk based 2SI fstab patching as basically we are just patching
fstab files. This also means we can manipulate fstab whatever Magisk
needs in the future without the need to going through the headache that
is patching DTBs at installation.
2020-05-04 02:21:51 -07:00
|
|
|
fstab.emplace_back(std::move(entry));
|
2019-05-27 00:29:43 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-10-26 20:46:15 -07:00
|
|
|
void MagiskInit::mount_with_dt() {
|
Force init to load fstab from file in 2SI
Patching DTBs is proven to be difficult and problematic as there are
tons of different formats out there. Adding support for all the formats
in magiskboot has been quite an headache in the past year, and it still
definitely does not cover all possible cases of them out there.
There is another issue: fake dt fstabs. Some super old devices do not
have device trees in their boot images, so some custom ROM developers
had came up with a "genius" solution: hardcode fstab entries directly
in the kernel source code and create fake device tree nodes even if
Android 10+ init can graciously take fstab files instead (-_-) 。。。
And there is YET another issue: DTBs are not always in boot images!
Google is crazy enough to litter DTBs all over the place, it is like
they cannot make up their minds (duh). This means the dt fstabs can be
either concatnated after the kernel (1), in the DTB partition (2), in
the DTBO partition (3), in the recovery_dtbo section in boot images (4),
or in the dtb section in boot images (5). FIVE f**king places, how can
anyone keep up with that!
With Android 10+ that uses 2 stage inits, it is crutual for Magisk to
be able to modify fstab mount points in order to let the original init
mount partitions for us, but NOT switch root and continue booting. For
devices using dt for early mount fstab, we used to patch the DTB at
install time with magiskboot. However these changes are permanent and
cannot be restored back at reinstallation.
With this commit, Magisk will read dt fstabs and write them to ramdisk
at boot time. And in that case, the init binary will also be patched
to force it to NEVER use fstabs in device-tree. By doing so, we can
unify ramdisk based 2SI fstab patching as basically we are just patching
fstab files. This also means we can manipulate fstab whatever Magisk
needs in the future without the need to going through the headache that
is patching DTBs at installation.
2020-05-04 02:21:51 -07:00
|
|
|
vector<fstab_entry> fstab;
|
2020-05-03 22:49:54 -07:00
|
|
|
read_dt_fstab(fstab);
|
Force init to load fstab from file in 2SI
Patching DTBs is proven to be difficult and problematic as there are
tons of different formats out there. Adding support for all the formats
in magiskboot has been quite an headache in the past year, and it still
definitely does not cover all possible cases of them out there.
There is another issue: fake dt fstabs. Some super old devices do not
have device trees in their boot images, so some custom ROM developers
had came up with a "genius" solution: hardcode fstab entries directly
in the kernel source code and create fake device tree nodes even if
Android 10+ init can graciously take fstab files instead (-_-) 。。。
And there is YET another issue: DTBs are not always in boot images!
Google is crazy enough to litter DTBs all over the place, it is like
they cannot make up their minds (duh). This means the dt fstabs can be
either concatnated after the kernel (1), in the DTB partition (2), in
the DTBO partition (3), in the recovery_dtbo section in boot images (4),
or in the dtb section in boot images (5). FIVE f**king places, how can
anyone keep up with that!
With Android 10+ that uses 2 stage inits, it is crutual for Magisk to
be able to modify fstab mount points in order to let the original init
mount partitions for us, but NOT switch root and continue booting. For
devices using dt for early mount fstab, we used to patch the DTB at
install time with magiskboot. However these changes are permanent and
cannot be restored back at reinstallation.
With this commit, Magisk will read dt fstabs and write them to ramdisk
at boot time. And in that case, the init binary will also be patched
to force it to NEVER use fstabs in device-tree. By doing so, we can
unify ramdisk based 2SI fstab patching as basically we are just patching
fstab files. This also means we can manipulate fstab whatever Magisk
needs in the future without the need to going through the headache that
is patching DTBs at installation.
2020-05-04 02:21:51 -07:00
|
|
|
for (const auto &entry : fstab) {
|
2020-05-03 22:49:54 -07:00
|
|
|
if (is_lnk(entry.mnt_point.data()))
|
|
|
|
continue;
|
|
|
|
// Derive partname from dev
|
|
|
|
sprintf(blk_info.partname, "%s%s", basename(entry.dev.data()), cmd->slot);
|
2020-10-28 04:17:34 -07:00
|
|
|
setup_block(true);
|
2020-05-03 22:49:54 -07:00
|
|
|
xmkdir(entry.mnt_point.data(), 0755);
|
|
|
|
xmount(blk_info.block_dev, entry.mnt_point.data(), entry.type.data(), MS_RDONLY, nullptr);
|
|
|
|
mount_list.push_back(entry.mnt_point);
|
|
|
|
}
|
2019-05-27 00:29:43 -07:00
|
|
|
}
|
|
|
|
|
2019-06-23 15:14:47 -07:00
|
|
|
static void switch_root(const string &path) {
|
|
|
|
LOGD("Switch root to %s\n", path.data());
|
2020-04-01 23:37:11 -07:00
|
|
|
int root = xopen("/", O_RDONLY);
|
2019-06-23 15:14:47 -07:00
|
|
|
vector<string> mounts;
|
|
|
|
parse_mnt("/proc/mounts", [&](mntent *me) {
|
Logical Resizable Android Partitions support
The way how logical partition, or "Logical Resizable Android Partitions"
as they say in AOSP source code, is setup makes it impossible to early
mount the partitions from the shared super partition with just
a few lines of code; in fact, AOSP has a whole "fs_mgr" folder which
consist of multiple complex libraries, with 15K lines of code just
to deal with the device mapper shenanigans.
In order to keep the already overly complicated MagiskInit more
managable, I chose NOT to go the route of including fs_mgr directly
into MagiskInit. Luckily, starting from Android Q, Google decided to
split init startup into 3 stages, with the first stage doing _only_
early mount. This is great news, because we can simply let the stock
init do its own thing for us, and we intercept the bootup sequence.
So the workflow can be visualized roughly below:
Magisk First Stage --> First Stage Mount --> Magisk Second Stage --+
(MagiskInit) (Original Init) (MagiskInit) +
+
+
...Rest of the boot... <-- Second Stage <-- Selinux Setup <--+
(__________________ Original Init ____________________)
The catch here is that after doing all the first stage mounting, /init
will pivot /system as root directory (/), leaving us impossible to
regain control after we hand it over. So the solution here is to patch
fstab in /first_stage_ramdisk on-the-fly to redirect /system to
/system_root, making the original init do all the hard work for
us and mount required early mount partitions, but skips the step of
switching root directory. It will also conveniently hand over execution
back to MagiskInit, which we will reuse the routine for patching
root directory in normal system-as-root situations.
2019-06-29 00:47:29 -07:00
|
|
|
// Skip root and self
|
|
|
|
if (me->mnt_dir == "/"sv || me->mnt_dir == path)
|
|
|
|
return true;
|
|
|
|
// Do not include subtrees
|
|
|
|
for (const auto &m : mounts) {
|
2020-02-20 21:08:44 -08:00
|
|
|
if (strncmp(me->mnt_dir, m.data(), m.length()) == 0 && me->mnt_dir[m.length()] == '/')
|
Logical Resizable Android Partitions support
The way how logical partition, or "Logical Resizable Android Partitions"
as they say in AOSP source code, is setup makes it impossible to early
mount the partitions from the shared super partition with just
a few lines of code; in fact, AOSP has a whole "fs_mgr" folder which
consist of multiple complex libraries, with 15K lines of code just
to deal with the device mapper shenanigans.
In order to keep the already overly complicated MagiskInit more
managable, I chose NOT to go the route of including fs_mgr directly
into MagiskInit. Luckily, starting from Android Q, Google decided to
split init startup into 3 stages, with the first stage doing _only_
early mount. This is great news, because we can simply let the stock
init do its own thing for us, and we intercept the bootup sequence.
So the workflow can be visualized roughly below:
Magisk First Stage --> First Stage Mount --> Magisk Second Stage --+
(MagiskInit) (Original Init) (MagiskInit) +
+
+
...Rest of the boot... <-- Second Stage <-- Selinux Setup <--+
(__________________ Original Init ____________________)
The catch here is that after doing all the first stage mounting, /init
will pivot /system as root directory (/), leaving us impossible to
regain control after we hand it over. So the solution here is to patch
fstab in /first_stage_ramdisk on-the-fly to redirect /system to
/system_root, making the original init do all the hard work for
us and mount required early mount partitions, but skips the step of
switching root directory. It will also conveniently hand over execution
back to MagiskInit, which we will reuse the routine for patching
root directory in normal system-as-root situations.
2019-06-29 00:47:29 -07:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
mounts.emplace_back(me->mnt_dir);
|
2019-06-23 15:14:47 -07:00
|
|
|
return true;
|
|
|
|
});
|
|
|
|
for (auto &dir : mounts) {
|
|
|
|
auto new_path = path + dir;
|
|
|
|
mkdir(new_path.data(), 0755);
|
2020-02-20 21:08:44 -08:00
|
|
|
xmount(dir.data(), new_path.data(), nullptr, MS_MOVE, nullptr);
|
2019-06-23 15:14:47 -07:00
|
|
|
}
|
|
|
|
chdir(path.data());
|
|
|
|
xmount(path.data(), "/", nullptr, MS_MOVE, nullptr);
|
|
|
|
chroot(".");
|
2020-04-01 23:37:11 -07:00
|
|
|
|
|
|
|
LOGD("Cleaning rootfs\n");
|
|
|
|
frm_rf(root);
|
2019-06-23 15:14:47 -07:00
|
|
|
}
|
|
|
|
|
2020-11-02 23:20:38 -08:00
|
|
|
void MagiskInit::mount_rules_dir(const char *dev_base, const char *mnt_base) {
|
|
|
|
char path[128];
|
2020-05-03 22:49:54 -07:00
|
|
|
xrealpath(dev_base, blk_info.block_dev);
|
2020-11-02 23:20:38 -08:00
|
|
|
xrealpath(mnt_base, path);
|
|
|
|
char *b = blk_info.block_dev + strlen(blk_info.block_dev);
|
|
|
|
char *p = path + strlen(path);
|
|
|
|
|
|
|
|
auto do_mount = [&](const char *type) -> bool {
|
|
|
|
xmkdir(path, 0755);
|
|
|
|
bool success = xmount(blk_info.block_dev, path, type, 0, nullptr) == 0;
|
|
|
|
if (success)
|
|
|
|
mount_list.emplace_back(path);
|
|
|
|
return success;
|
|
|
|
};
|
|
|
|
|
|
|
|
// First try userdata
|
|
|
|
strcpy(blk_info.partname, "userdata");
|
|
|
|
strcpy(b, "/data");
|
|
|
|
strcpy(p, "/data");
|
2020-01-08 22:42:54 +08:00
|
|
|
if (setup_block(false) < 0) {
|
2020-11-02 23:20:38 -08:00
|
|
|
// Try NVIDIA naming scheme
|
|
|
|
strcpy(blk_info.partname, "UDA");
|
|
|
|
if (setup_block(false) < 0)
|
|
|
|
goto cache;
|
2020-01-08 22:42:54 +08:00
|
|
|
}
|
2020-11-02 23:20:38 -08:00
|
|
|
// Try to mount with either ext4 or f2fs
|
|
|
|
// Failure means either FDE or metadata encryption
|
|
|
|
if (!do_mount("ext4") && !do_mount("f2fs"))
|
|
|
|
goto cache;
|
|
|
|
|
|
|
|
strcpy(p, "/data/unencrypted");
|
|
|
|
if (access(path, F_OK) == 0) {
|
|
|
|
// FBE, need to use an unencrypted path
|
|
|
|
custom_rules_dir = path + "/magisk"s;
|
|
|
|
} else {
|
|
|
|
// Skip if /data/adb does not exist
|
|
|
|
strcpy(p, "/data/adb");
|
|
|
|
if (access(path, F_OK) != 0)
|
|
|
|
return;
|
|
|
|
// Unencrypted, directly use module paths
|
|
|
|
custom_rules_dir = string(mnt_base) + MODULEROOT;
|
|
|
|
}
|
|
|
|
goto success;
|
|
|
|
|
|
|
|
cache:
|
|
|
|
// Fallback to cache
|
|
|
|
strcpy(blk_info.partname, "cache");
|
|
|
|
strcpy(b, "/cache");
|
|
|
|
strcpy(p, "/cache");
|
|
|
|
if (setup_block(false) < 0) {
|
|
|
|
// Try NVIDIA naming scheme
|
|
|
|
strcpy(blk_info.partname, "CAC");
|
|
|
|
if (setup_block(false) < 0)
|
|
|
|
goto metadata;
|
|
|
|
}
|
|
|
|
if (!do_mount("ext4"))
|
|
|
|
goto metadata;
|
|
|
|
custom_rules_dir = path + "/magisk"s;
|
|
|
|
goto success;
|
|
|
|
|
|
|
|
metadata:
|
|
|
|
// Fallback to metadata
|
|
|
|
strcpy(blk_info.partname, "metadata");
|
|
|
|
strcpy(b, "/metadata");
|
|
|
|
strcpy(p, "/metadata");
|
|
|
|
if (setup_block(false) < 0 || !do_mount("ext4"))
|
|
|
|
goto persist;
|
|
|
|
custom_rules_dir = path + "/magisk"s;
|
|
|
|
goto success;
|
|
|
|
|
|
|
|
persist:
|
|
|
|
// Fallback to persist
|
|
|
|
strcpy(blk_info.partname, "persist");
|
|
|
|
strcpy(b, "/persist");
|
|
|
|
strcpy(p, "/persist");
|
|
|
|
if (setup_block(false) < 0 || !do_mount("ext4"))
|
|
|
|
return;
|
|
|
|
custom_rules_dir = path + "/magisk"s;
|
|
|
|
|
|
|
|
success:
|
|
|
|
// Create symlinks so we don't need to go through this logic again
|
|
|
|
strcpy(p, "/sepolicy.rules");
|
|
|
|
xsymlink(custom_rules_dir.data(), path);
|
2020-01-08 22:42:54 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void RootFSInit::early_mount() {
|
2020-09-02 02:49:32 -07:00
|
|
|
self = raw_data::read("/init");
|
2020-01-08 22:42:54 +08:00
|
|
|
|
2020-05-03 22:49:54 -07:00
|
|
|
LOGD("Restoring /init\n");
|
2020-01-08 22:42:54 +08:00
|
|
|
rename("/.backup/init", "/init");
|
|
|
|
|
2020-10-26 20:46:15 -07:00
|
|
|
mount_with_dt();
|
2020-01-08 22:42:54 +08:00
|
|
|
}
|
|
|
|
|
2020-04-01 04:39:28 -07:00
|
|
|
void SARBase::backup_files() {
|
2019-07-16 01:08:28 -07:00
|
|
|
if (access("/overlay.d", F_OK) == 0)
|
2020-04-01 04:39:28 -07:00
|
|
|
backup_folder("/overlay.d", overlays);
|
2019-07-16 01:08:28 -07:00
|
|
|
|
2020-09-02 02:49:32 -07:00
|
|
|
self = raw_data::read("/proc/self/exe");
|
2020-04-19 22:15:12 -07:00
|
|
|
if (access("/.backup/.magisk", R_OK) == 0)
|
2020-09-02 02:49:32 -07:00
|
|
|
config = raw_data::read("/.backup/.magisk");
|
2019-07-16 01:08:28 -07:00
|
|
|
}
|
|
|
|
|
2020-04-01 04:39:28 -07:00
|
|
|
void SARBase::mount_system_root() {
|
2019-06-23 15:14:47 -07:00
|
|
|
LOGD("Early mount system_root\n");
|
2020-05-03 22:49:54 -07:00
|
|
|
strcpy(blk_info.block_dev, "/dev/root");
|
2020-09-23 16:18:51 -05:00
|
|
|
// Try legacy SAR dm-verity
|
|
|
|
strcpy(blk_info.partname, "vroot");
|
2019-12-09 02:44:49 -05:00
|
|
|
auto dev = setup_block(false);
|
2020-09-23 16:18:51 -05:00
|
|
|
if (dev >= 0)
|
|
|
|
goto mount_root;
|
|
|
|
|
|
|
|
// Try NVIDIA naming scheme
|
|
|
|
strcpy(blk_info.partname, "APP");
|
|
|
|
dev = setup_block(false);
|
|
|
|
if (dev >= 0)
|
|
|
|
goto mount_root;
|
|
|
|
|
|
|
|
sprintf(blk_info.partname, "system%s", cmd->slot);
|
|
|
|
dev = setup_block(false);
|
|
|
|
if (dev >= 0)
|
|
|
|
goto mount_root;
|
|
|
|
|
|
|
|
// We don't really know what to do at this point...
|
|
|
|
LOGE("Cannot find root partition, abort\n");
|
|
|
|
exit(1);
|
|
|
|
mount_root:
|
2019-06-23 15:14:47 -07:00
|
|
|
xmkdir("/system_root", 0755);
|
|
|
|
if (xmount("/dev/root", "/system_root", "ext4", MS_RDONLY, nullptr))
|
|
|
|
xmount("/dev/root", "/system_root", "erofs", MS_RDONLY, nullptr);
|
2020-04-01 04:39:28 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
void SARInit::early_mount() {
|
|
|
|
// Make dev writable
|
|
|
|
xmkdir("/dev", 0755);
|
|
|
|
xmount("tmpfs", "/dev", "tmpfs", 0, "mode=755");
|
|
|
|
mount_list.emplace_back("/dev");
|
|
|
|
|
|
|
|
backup_files();
|
|
|
|
|
|
|
|
mount_system_root();
|
2019-06-23 15:14:47 -07:00
|
|
|
switch_root("/system_root");
|
2019-06-25 02:47:16 -07:00
|
|
|
|
2020-10-26 20:46:15 -07:00
|
|
|
mount_with_dt();
|
2019-06-23 15:14:47 -07:00
|
|
|
}
|
|
|
|
|
2020-04-01 04:39:28 -07:00
|
|
|
void SARFirstStageInit::early_mount() {
|
|
|
|
backup_files();
|
|
|
|
mount_system_root();
|
|
|
|
switch_root("/system_root");
|
|
|
|
}
|
Logical Resizable Android Partitions support
The way how logical partition, or "Logical Resizable Android Partitions"
as they say in AOSP source code, is setup makes it impossible to early
mount the partitions from the shared super partition with just
a few lines of code; in fact, AOSP has a whole "fs_mgr" folder which
consist of multiple complex libraries, with 15K lines of code just
to deal with the device mapper shenanigans.
In order to keep the already overly complicated MagiskInit more
managable, I chose NOT to go the route of including fs_mgr directly
into MagiskInit. Luckily, starting from Android Q, Google decided to
split init startup into 3 stages, with the first stage doing _only_
early mount. This is great news, because we can simply let the stock
init do its own thing for us, and we intercept the bootup sequence.
So the workflow can be visualized roughly below:
Magisk First Stage --> First Stage Mount --> Magisk Second Stage --+
(MagiskInit) (Original Init) (MagiskInit) +
+
+
...Rest of the boot... <-- Second Stage <-- Selinux Setup <--+
(__________________ Original Init ____________________)
The catch here is that after doing all the first stage mounting, /init
will pivot /system as root directory (/), leaving us impossible to
regain control after we hand it over. So the solution here is to patch
fstab in /first_stage_ramdisk on-the-fly to redirect /system to
/system_root, making the original init do all the hard work for
us and mount required early mount partitions, but skips the step of
switching root directory. It will also conveniently hand over execution
back to MagiskInit, which we will reuse the routine for patching
root directory in normal system-as-root situations.
2019-06-29 00:47:29 -07:00
|
|
|
|
2020-04-01 04:39:28 -07:00
|
|
|
void SecondStageInit::early_mount() {
|
|
|
|
backup_files();
|
Logical Resizable Android Partitions support
The way how logical partition, or "Logical Resizable Android Partitions"
as they say in AOSP source code, is setup makes it impossible to early
mount the partitions from the shared super partition with just
a few lines of code; in fact, AOSP has a whole "fs_mgr" folder which
consist of multiple complex libraries, with 15K lines of code just
to deal with the device mapper shenanigans.
In order to keep the already overly complicated MagiskInit more
managable, I chose NOT to go the route of including fs_mgr directly
into MagiskInit. Luckily, starting from Android Q, Google decided to
split init startup into 3 stages, with the first stage doing _only_
early mount. This is great news, because we can simply let the stock
init do its own thing for us, and we intercept the bootup sequence.
So the workflow can be visualized roughly below:
Magisk First Stage --> First Stage Mount --> Magisk Second Stage --+
(MagiskInit) (Original Init) (MagiskInit) +
+
+
...Rest of the boot... <-- Second Stage <-- Selinux Setup <--+
(__________________ Original Init ____________________)
The catch here is that after doing all the first stage mounting, /init
will pivot /system as root directory (/), leaving us impossible to
regain control after we hand it over. So the solution here is to patch
fstab in /first_stage_ramdisk on-the-fly to redirect /system to
/system_root, making the original init do all the hard work for
us and mount required early mount partitions, but skips the step of
switching root directory. It will also conveniently hand over execution
back to MagiskInit, which we will reuse the routine for patching
root directory in normal system-as-root situations.
2019-06-29 00:47:29 -07:00
|
|
|
|
2020-04-19 22:15:12 -07:00
|
|
|
umount2("/init", MNT_DETACH);
|
|
|
|
umount2("/proc/self/exe", MNT_DETACH);
|
2020-04-01 04:39:28 -07:00
|
|
|
|
|
|
|
if (access("/system_root", F_OK) == 0)
|
|
|
|
switch_root("/system_root");
|
Logical Resizable Android Partitions support
The way how logical partition, or "Logical Resizable Android Partitions"
as they say in AOSP source code, is setup makes it impossible to early
mount the partitions from the shared super partition with just
a few lines of code; in fact, AOSP has a whole "fs_mgr" folder which
consist of multiple complex libraries, with 15K lines of code just
to deal with the device mapper shenanigans.
In order to keep the already overly complicated MagiskInit more
managable, I chose NOT to go the route of including fs_mgr directly
into MagiskInit. Luckily, starting from Android Q, Google decided to
split init startup into 3 stages, with the first stage doing _only_
early mount. This is great news, because we can simply let the stock
init do its own thing for us, and we intercept the bootup sequence.
So the workflow can be visualized roughly below:
Magisk First Stage --> First Stage Mount --> Magisk Second Stage --+
(MagiskInit) (Original Init) (MagiskInit) +
+
+
...Rest of the boot... <-- Second Stage <-- Selinux Setup <--+
(__________________ Original Init ____________________)
The catch here is that after doing all the first stage mounting, /init
will pivot /system as root directory (/), leaving us impossible to
regain control after we hand it over. So the solution here is to patch
fstab in /first_stage_ramdisk on-the-fly to redirect /system to
/system_root, making the original init do all the hard work for
us and mount required early mount partitions, but skips the step of
switching root directory. It will also conveniently hand over execution
back to MagiskInit, which we will reuse the routine for patching
root directory in normal system-as-root situations.
2019-06-29 00:47:29 -07:00
|
|
|
}
|
2019-12-05 16:29:45 -05:00
|
|
|
|
|
|
|
void BaseInit::cleanup() {
|
|
|
|
// Unmount in reverse order
|
|
|
|
for (auto &p : reversed(mount_list)) {
|
2019-12-13 06:05:12 -05:00
|
|
|
if (xumount(p.data()) == 0)
|
|
|
|
LOGD("Unmount [%s]\n", p.data());
|
2019-12-05 16:29:45 -05:00
|
|
|
}
|
2019-12-13 06:05:12 -05:00
|
|
|
mount_list.clear();
|
|
|
|
mount_list.shrink_to_fit();
|
2019-12-05 16:29:45 -05:00
|
|
|
}
|
2019-12-09 02:44:49 -05:00
|
|
|
|
2020-04-12 05:34:56 -07:00
|
|
|
static void patch_socket_name(const char *path) {
|
2020-05-03 22:49:54 -07:00
|
|
|
char rstr[16];
|
|
|
|
gen_rand_str(rstr, sizeof(rstr));
|
2020-09-02 02:49:32 -07:00
|
|
|
auto bin = raw_data::mmap_rw(path);
|
|
|
|
bin.patch({ make_pair(MAIN_SOCKET, rstr) });
|
2020-04-12 05:34:56 -07:00
|
|
|
}
|
2019-12-09 02:44:49 -05:00
|
|
|
|
2020-10-26 20:46:15 -07:00
|
|
|
void MagiskInit::setup_tmp(const char *path) {
|
2020-04-12 05:34:56 -07:00
|
|
|
LOGD("Setup Magisk tmp at %s\n", path);
|
|
|
|
xmount("tmpfs", path, "tmpfs", 0, "mode=755");
|
|
|
|
|
|
|
|
chdir(path);
|
|
|
|
|
|
|
|
xmkdir(INTLROOT, 0755);
|
2019-12-09 02:44:49 -05:00
|
|
|
xmkdir(MIRRDIR, 0);
|
|
|
|
xmkdir(BLOCKDIR, 0);
|
|
|
|
|
2020-04-12 05:34:56 -07:00
|
|
|
int fd = xopen(INTLROOT "/config", O_WRONLY | O_CREAT, 0);
|
|
|
|
xwrite(fd, config.buf, config.sz);
|
|
|
|
close(fd);
|
|
|
|
fd = xopen("magiskinit", O_WRONLY | O_CREAT, 0755);
|
|
|
|
xwrite(fd, self.buf, self.sz);
|
|
|
|
close(fd);
|
|
|
|
dump_magisk("magisk", 0755);
|
|
|
|
patch_socket_name("magisk");
|
|
|
|
|
|
|
|
// Create applet symlinks
|
|
|
|
for (int i = 0; applet_names[i]; ++i)
|
|
|
|
xsymlink("./magisk", applet_names[i]);
|
|
|
|
xsymlink("./magiskinit", "magiskpolicy");
|
|
|
|
xsymlink("./magiskinit", "supolicy");
|
|
|
|
|
|
|
|
chdir("/");
|
2019-12-09 02:44:49 -05:00
|
|
|
}
|