Due to changes in ec3705f2ed, the app can
no longer communicate with the dameon through a socket opened on the
daemon side due to SELinux restrictions. The workaround here is to have
the daemon decide a socket name, send it to the app, have the app create
the socket server, then finally the daemon connects to the app through
the socket.
Introduce new domain `magisk_client` and new file type `magisk_exec`.
Connection to magiskd's always-on socket is restricted to magisk_client
only. Whitelisted process domains can transit to magisk_client through
executing files labelled magisk_exec. The main magisk binary shall be
the only file labelled as magisk_exec throughout the whole system.
All processes thus are no longer allowed to connect to magiskd directly
without going through the proper magisk binary.
Connection failures are silenced from audit logs with dontaudit rules,
so crazy processes which traverse through all unix domain sockets to try
connection can no longer check logcat to know the actual reason behind
EACCES, leaking the denied process policy (which is u:r:magisk:s0).
This also allows us to remove many rules that open up holes in
untrusted_app domains that were used to make remote shell work properly.
Since all processes establishing the remote shell are now restricted to
the magisk_client domain, all these rules are moved to magisk_client.
This makes Magisk require fewer compromises in Android's security model.
Note: as of this commit, requesting new root access via Magisk Manager
will stop working as Magisk Manager can no longer communicate with
magiskd directly. This will be addressed in a future commit that
involves changes in both native and application side.
Previously, we use either BroadcastReceivers or Activities to receive
messages from our native daemon, but both have their own downsides.
Some OEMs blocks broadcasts if the app is not running in the background,
regardless of who the caller is. Activities on the other hand, despite
working 100% of the time, will steal the focus of the current foreground
app, even though we are just doing some logging and showing a toast.
In addition, since stubs for hiding Magisk Manager is introduced, our
only communication method is left with the broadcast option, as
only broadcasting allows targeting a specific package name, not a
component name (which will be obfuscated in the case of stubs).
To make sure root requests will work on all devices, Magisk had to do
some experiments every boot to test whether broadcast is deliverable or
not. This makes the whole thing even more complicated then ever.
So lets take a look at another kind of component in Android apps:
ContentProviders. It is a vital part of Android's ecosystem, and as far
as I know no OEMs will block requests to ContentProviders (or else
tons of functionality will break catastrophically). Starting at API 11,
the system supports calling a specific method in ContentProviders,
optionally sending extra data along with the method call. This is
perfect for the native daemon to start a communication with Magisk
Manager. Another cool thing is that we no longer need to know the
component name of the reciever, as ContentProviders identify themselves
with an "authority" name, which in Magisk Manager's case is tied to the
package name. We already have a mechanism to keep track of our current
manager package name, so this works out of the box.
So yay! No more flaky broadcast tests, no more stupid OEMs blocking
broadcasts for some bizzare reasons. This method should in theory
work on almost all devices and situations.
Usually, the communication between native and the app is done via
sending intents to either broadcast or activity. These communication
channels are for launching root requests dialogs, sending root request
notifications (the toast you see when an app gained root access), and
root request logging.
Sending intents by am (activity manager) usually requires specifying
the component name in the format of <pkg>/<class name>. This means parts
of Magisk Manager cannot be randomized or else the native daemon is
unable to know where to send data to the app.
On modern Android (not sure which API is it introduced), it is possible
to send broadcasts to a package, not a specific component. Which
component will receive the intent depends on the intent filter declared
in AndroidManifest.xml. Since we already have a mechanism in native code
to keep track of the package name of Magisk Manager, this makes it
perfect to pass intents to Magisk Manager that have components being
randomly obfuscated (stub APKs).
There are a few caveats though. Although this broadcasting method works
perfectly fine on AOSP and most systems, there are OEMs out there
shipping ROMs blocking broadcasts unexpectedly. In order to make sure
Magisk works in all kinds of scenarios, we run actual tests every boot
to determine which communication method should be used.
We have 3 methods in total, ordered in preference:
1. Broadcasting to a package
2. Broadcasting to a specific component
3. Starting a specific activity component
Method 3 will always work on any device, but the downside is anytime
a communication happens, Magisk Manager will steal foreground focus
regardless of whether UI is drawn. Method 1 is the only way to support
obfuscated stub APKs. The communication test will test method 1 and 2,
and if Magisk Manager is able to receive the messages, it will then
update the daemon configuration to use whichever is preferable. If none
of the broadcasts can be delivered, then the fallback method 3 will be
used.
In commit 8d4c407, native Magisk always launches an activity for
communicating with Magisk Manager. While this works extremely well,
since it also workaround stupid OEMs that blocks broadcasts, it has a
problem: launching an activity will claim the focus of the device,
which could be super annoying in some circumstances.
This commit adds a new feature to run a broadcast test on boot complete.
If Magisk Manager successfully receives the broadcast, it will toggle
a setting in magiskd so all future su loggings and notifies will always
use broadcasts instead of launching activities.
Fix#1412