No matter if we use the old, buggy, error prone am_proc_start monitoring,
or the new APK inotify method, both methods rely on MagiskHide 'reacting'
fast enough to hijack the process before any detection has been done.
However, this is not reliable and practical. There are apps that utilize
native libraries to start detects and register SIGCONT signal handlers
to mitigate all existing MagiskHide process monitoring mechanism. So
our only solution is to hijack an app BEFORE it is started.
All Android apps' process is forked from zygote, so it is easily the
target to be monitored. All forks will be notified, and subsequent
thread spawning (Android apps are heaviliy multithreaded) from children
are also closely monitored to find the earliest possible point to
identify what the process will eventually be (before am_proc_bound).
ptrace is extremely complicated and very difficult to get right. The
current code is heaviliy tested on a stock Android 9.0 Pixel system,
so in theory it should work fine on most devices, but more tests and
potentially fixes are expected to follow this commit.
Shut down any UID matching process and resume if it turns out not to
be our target. Since we will record every single process we have ever
paused, this means that the same process will not be paused erroneously
for another time.
This is an optimization to hijack the app as soon as possible.
Before switching to the new MagiskHide implementation (APK inotify),
logcat parsing provides us lots of information to target a process.
We were targeting components so that apps with multi-processes
can still be hidden properly.
After switching to the new implementation, our granularity is limited
to the UID of the process. This is especially dangerous since Android
allow apps signed with the same signature to share UIDs, and many system
apps utilize this for elevated permissions for some services.
This commit introduces process name matching. We could not blanketly
target an UID, so the workaround is to verify its process name before
unmounting.
The tricky thing is that any app developer is allowed to name the
process of its component to whatever they want; there is no 'one
rule to catch them all' to target a specific package. As a result,
Magisk Manager is updated to scan through all components of all apps,
and show different processes of the same app, each as a separate
hide target in the list.
The hide target database also has to be updated accordingly.
Each hide target is now a <package name, process name> pair. The
magiskhide CLI and Magisk Manager is updated to support this new
target format.
Most Chinese devices (and supposedly Galaxy S10) running Android Pie
is using system-as-root without A/B partition.
https://source.android.com/devices/bootloader/system-as-root#about-system-as-root
According to the docs above, these devices will have a ramdisk block
with size 0 in their boot images. Since magiskinit can run independently
on system-as-root devices, we simply just create an empty ramdisk with
magiskinit added as init.
Huge thanks to @vvb2060 for the heads up and original PR.
Close#980, close#1102
Since we switched to imageless Magisk, module files are directly
stored in /data. However, /data is mounted with nosuid, which also
prevents SELinux typetransition to work (auto transition from one
domain to another when executing files with specific context).
This could cause serious issues when we are replacing system critical
components (e.g. app_process for Xposed), because most of them
are daemons that run in special process domains.
This commit introduced /data mirror. Using similar mirroring technique
we used for system and vendor, we mount another mirror that mounts
/data without nosuid flag. All module files are then mounted from this
mirror mountpoint instead of directly from /data.
Close#1080
Reinstalling system apps as data creates tons of issues.
Calling pm path <pkg> is extremely expensive and doesn't work in post-fs-data.
Parse through packages.xml to get APK path and UID at the same time.
As a bonus, we don't need to traverse /data/app for packages anymore.
Since we are parsing through /data/app/ to find target APKs for
monitoring, system apps will not be covered in this case.
Automatically reinstall system apps as if they received an update
and refresh the monitor target after it's done.
As a bonus, use RAII idioms for locking pthread_mutex_t.
- Fail fast on unsupported systems
- Show proper fail message on unsupported systems
- inotify_fd shall be swapped out before closing to prevent
the proc_monitor thread to read from incomplete inotify fd
- Directly get UID instead of traversing /data/data everytime
- Use /data/user_de/0 instead of /data/data on Android 7.0+
- Update hide_uid set incrementally when adding/initializing targets
- Guard hide_uid set with the same lock as hide_list vector
- Do not add GMS package into database; only add to in-memory list
With the new detection method, it is impossible to check for components.
Remove additional checks for components and simply hardcode string to
proc_monitor.cpp and query cmdline to see if it's GMS unstable.
This addresses wasted resources on applying custom namespace
on all GMS processes.
Signed-off-by: Park Ju Hyung <qkrwngud825@gmail.com>
Previous MagiskHide detects new app launches via listening through logcat
and filtering launch info messages.
This is extremely inefficient and prone to cause multiple issues both
theoratically and practically.
Rework this by using inotify to detect open() syscalls to target APKs.
This also solves issues related to Zygote-forked caching mechanisms such as
OnePlus OxygenOS' embryo.
Signed-off-by: Park Ju Hyung <qkrwngud825@gmail.com>
Mounting ext4 images causes tons of issues, such as unmountable with broken F2FS drivers.
Resizing is also very complicated and does not work properly on all devices.
Each step in either measuring free space, resizing, and shrinking the image is a
point of failure, and either step's failure could cause the module system completely broken.
The new method is to directly store modules into /data/adb/modules, and for module installation
on boot /data/adb/modules_update. Several compatibility layers has been done: the new path is
bind mounted to the old path (/sbin/.magisk/img), and the helper functions in util_functions.sh
will now transparently make existing modules install to the new location without any changes.
MagiskHide is also updated to unmount module files stored in this new location.