Since we switched to imageless Magisk, module files are directly
stored in /data. However, /data is mounted with nosuid, which also
prevents SELinux typetransition to work (auto transition from one
domain to another when executing files with specific context).
This could cause serious issues when we are replacing system critical
components (e.g. app_process for Xposed), because most of them
are daemons that run in special process domains.
This commit introduced /data mirror. Using similar mirroring technique
we used for system and vendor, we mount another mirror that mounts
/data without nosuid flag. All module files are then mounted from this
mirror mountpoint instead of directly from /data.
Close#1080
Since we are parsing through /data/app/ to find target APKs for
monitoring, system apps will not be covered in this case.
Automatically reinstall system apps as if they received an update
and refresh the monitor target after it's done.
As a bonus, use RAII idioms for locking pthread_mutex_t.
Previous MagiskHide detects new app launches via listening through logcat
and filtering launch info messages.
This is extremely inefficient and prone to cause multiple issues both
theoratically and practically.
Rework this by using inotify to detect open() syscalls to target APKs.
This also solves issues related to Zygote-forked caching mechanisms such as
OnePlus OxygenOS' embryo.
Signed-off-by: Park Ju Hyung <qkrwngud825@gmail.com>
Mounting ext4 images causes tons of issues, such as unmountable with broken F2FS drivers.
Resizing is also very complicated and does not work properly on all devices.
Each step in either measuring free space, resizing, and shrinking the image is a
point of failure, and either step's failure could cause the module system completely broken.
The new method is to directly store modules into /data/adb/modules, and for module installation
on boot /data/adb/modules_update. Several compatibility layers has been done: the new path is
bind mounted to the old path (/sbin/.magisk/img), and the helper functions in util_functions.sh
will now transparently make existing modules install to the new location without any changes.
MagiskHide is also updated to unmount module files stored in this new location.
Introduce a new communication method between Magisk and Magisk Manager.
Magisk used to hardcode classnames and send broadcast/start activities to
specific components. This new method makes no assumption of any class names,
so Magisk Manager can easily be fully obfuscated.
In addition, the new method connects Magisk and Magisk Manager with random
abstract Linux sockets instead of socket files in filesystems, bypassing
file system complexities (selinux, permissions and such)
Boot services tend to fail in the middle when the kernel loads a sepolicy live.
It seems that moving full patch (allow magisk * * *) to late_start is still not enough to fix service startup failures.
So screw it, apply all patched in magiskinit, which makes sure that all rules are only loaded in a single step.
The only down side is that some OEM with a HUGE set of secontexts (e.g. Samsung) might suffer a slightly longer boot time, which IS the reason why the rules are split to 2 parts in the first place.
In previous versions, magiskinit will not early mount if /sepolicy is detected. However on OP5/5T latest betas, the devices are fully trebelized,
but for some reason the file /sepolicy still exists, making magiskinit think it is NOT a treble device and doesn't work properly.
So to properly fix this issue, I will have to use the "official" way - check fstab in device trees. Any block mentioned in the fstab in device trees
are supposed to be early mounted. Currently magiskinit will only mount system and vendor even if other partitions exists in the dtb fstab, since other
partitions are not used to construct sepolicy (currently).
These changes can also fix#373, since we dynamically detect PARTNAME from device trees.
1. Introduce new applet: imgtool for better separation from the main program
2. Actually mount the image and check statvfs for free space in the image
This shall eliminate any possible module installation failure from image resizing issues.
The &cmd will return a pointer which point to a pointer of cmdline.
It is a memory address which is usually 8 bytes in 64 bits machine.
However, the struct cmdline is 4 bytes. This will cause setting zero
beyond the bound.
Below is a simple example to show the differentiation:
struct cmdline {
char skip_initramfs;
char slot[3];
};
static void parse_cmdline(struct cmdline *cmd)
{
printf("%lu\n", sizeof(*cmd)); /* 4 */
printf("%lu\n", sizeof(&cmd)); /* 8 */
}
int main()
{
struct cmdline cmd;
parse_cmdline(&cmd);
return 0;
}
This patch prevents this.
Signed-off-by: npes87184 <npes87184@gmail.com>