#include #include #include #include #include "bootimg.h" #include "magiskboot.h" #include "utils.h" #include "logging.h" #include "mincrypt/sha.h" #include "mincrypt/sha256.h" #define INSUF_BLOCK_RET 2 #define CHROMEOS_RET 3 #define ELF32_RET 4 #define ELF64_RET 5 // Macros to determine header on-the-go #define lheader(b, e, o) \ ((b)->flags & PXA_FLAG) ? \ (((struct pxa_boot_img_hdr*) (b)->hdr)->e o) : \ (((struct boot_img_hdr*) (b)->hdr)->e o) #define header(b, e) (lheader(b, e,)) static void dump(void *buf, size_t size, const char *filename) { int fd = creat(filename, 0644); xwrite(fd, buf, size); close(fd); } static size_t restore(const char *filename, int fd) { int ifd = xopen(filename, O_RDONLY); size_t size = lseek(ifd, 0, SEEK_END); lseek(ifd, 0, SEEK_SET); xsendfile(fd, ifd, NULL, size); close(ifd); return size; } static void restore_buf(int fd, const void *buf, size_t size) { xwrite(fd, buf, size); } static void print_hdr(const boot_img *boot) { fprintf(stderr, "KERNEL [%u]\n", header(boot, kernel_size)); fprintf(stderr, "RAMDISK [%u]\n", header(boot, ramdisk_size)); fprintf(stderr, "SECOND [%u]\n", header(boot, second_size)); fprintf(stderr, "EXTRA [%u]\n", header(boot, extra_size)); fprintf(stderr, "PAGESIZE [%u]\n", header(boot, page_size)); if (!(boot->flags & PXA_FLAG)) { uint32_t os_version = ((boot_img_hdr*) boot->hdr)->os_version; if (os_version) { int a,b,c,y,m = 0; int version, patch_level; version = os_version >> 11; patch_level = os_version & 0x7ff; a = (version >> 14) & 0x7f; b = (version >> 7) & 0x7f; c = version & 0x7f; fprintf(stderr, "OS_VERSION [%d.%d.%d]\n", a, b, c); y = (patch_level >> 4) + 2000; m = patch_level & 0xf; fprintf(stderr, "PATCH_LEVEL [%d-%02d]\n", y, m); } } fprintf(stderr, "NAME [%s]\n", header(boot, name)); fprintf(stderr, "CMDLINE [%s]\n", header(boot, cmdline)); fprintf(stderr, "CHECKSUM ["); for (int i = 0; i < ((boot->flags & SHA256_FLAG) ? SHA256_DIGEST_SIZE : SHA_DIGEST_SIZE); ++i) fprintf(stderr, "%02x", header(boot, id)[i]); fprintf(stderr, "]\n"); } static void clean_boot(boot_img *boot) { munmap(boot->map_addr, boot->map_size); free(boot->hdr); free(boot->k_hdr); free(boot->r_hdr); free(boot->b_hdr); memset(boot, 0, sizeof(*boot)); } #define pos_align() pos = align(pos, header(boot, page_size)) int parse_img(const char *image, boot_img *boot) { memset(boot, 0, sizeof(*boot)); int is_blk = mmap_ro(image, &boot->map_addr, &boot->map_size); // Parse image fprintf(stderr, "Parsing boot image: [%s]\n", image); for (void *head = boot->map_addr; head < boot->map_addr + boot->map_size; ++head) { size_t pos = 0; switch (check_fmt(head)) { case CHROMEOS: // The caller should know it's chromeos, as it needs additional signing boot->flags |= CHROMEOS_FLAG; continue; case DHTB: boot->flags |= DHTB_FLAG; boot->flags |= SEANDROID_FLAG; fprintf(stderr, "DHTB_HDR\n"); continue; case ELF32: exit(ELF32_RET); case ELF64: exit(ELF64_RET); case BLOB: boot->flags |= BLOB_FLAG; fprintf(stderr, "TEGRA_BLOB\n"); boot->b_hdr = malloc(sizeof(blob_hdr)); memcpy(boot->b_hdr, head, sizeof(blob_hdr)); continue; case AOSP: // Read the header if (((boot_img_hdr*) head)->page_size >= 0x02000000) { boot->flags |= PXA_FLAG; fprintf(stderr, "PXA_BOOT_HDR\n"); boot->hdr = malloc(sizeof(pxa_boot_img_hdr)); memcpy(boot->hdr, head, sizeof(pxa_boot_img_hdr)); } else if (memcmp(((boot_img_hdr*) head)->cmdline, NOOK_MAGIC, 12) == 0) { boot->flags |= NOOK_FLAG; fprintf(stderr, "NOOK_GREEN_LOADER\n"); head += NOOK_PRE_HEADER_SZ - 1; continue; } else { boot->hdr = malloc(sizeof(boot_img_hdr)); memcpy(boot->hdr, head, sizeof(boot_img_hdr)); } pos += header(boot, page_size); for (int i = SHA_DIGEST_SIZE; i < SHA256_DIGEST_SIZE; ++i) { if (header(boot, id)[i]) { boot->flags |= SHA256_FLAG; break; } } print_hdr(boot); boot->kernel = head + pos; pos += header(boot, kernel_size); pos_align(); boot->ramdisk = head + pos; pos += header(boot, ramdisk_size); pos_align(); if (header(boot, second_size)) { boot->second = head + pos; pos += header(boot, second_size); pos_align(); } if (header(boot, extra_size)) { boot->extra = head + pos; pos += header(boot, extra_size); pos_align(); } if (pos < boot->map_size) { boot->tail = head + pos; boot->tail_size = boot->map_size - pos; } // Check tail info, currently only for LG Bump and Samsung SEANDROIDENFORCE if (boot->tail_size >= 16 && memcmp(boot->tail, SEANDROID_MAGIC, 16) == 0) { boot->flags |= SEANDROID_FLAG; } else if (boot->tail_size >= 16 && memcmp(boot->tail, LG_BUMP_MAGIC, 16) == 0) { boot->flags |= LG_BUMP_FLAG; } // Search for dtb in kernel for (uint32_t i = 0; i < header(boot, kernel_size); ++i) { if (memcmp(boot->kernel + i, DTB_MAGIC, 4) == 0) { boot->dtb = boot->kernel + i; boot->dt_size = header(boot, kernel_size) - i; lheader(boot, kernel_size, = i); fprintf(stderr, "DTB [%u]\n", boot->dt_size); break; } } boot->k_fmt = check_fmt(boot->kernel); boot->r_fmt = check_fmt(boot->ramdisk); // Check MTK if (boot->k_fmt == MTK) { fprintf(stderr, "MTK_KERNEL_HDR\n"); boot->flags |= MTK_KERNEL; boot->k_hdr = malloc(sizeof(mtk_hdr)); memcpy(boot->k_hdr, boot->kernel, sizeof(mtk_hdr)); fprintf(stderr, "KERNEL [%u]\n", boot->k_hdr->size); fprintf(stderr, "NAME [%s]\n", boot->k_hdr->name); boot->kernel += 512; lheader(boot, kernel_size, -= 512); boot->k_fmt = check_fmt(boot->kernel); } if (boot->r_fmt == MTK) { fprintf(stderr, "MTK_RAMDISK_HDR\n"); boot->flags |= MTK_RAMDISK; boot->r_hdr = malloc(sizeof(mtk_hdr)); memcpy(boot->r_hdr, boot->kernel, sizeof(mtk_hdr)); fprintf(stderr, "RAMDISK [%u]\n", boot->r_hdr->size); fprintf(stderr, "NAME [%s]\n", boot->r_hdr->name); boot->ramdisk += 512; lheader(boot, ramdisk_size, -= 512); boot->r_fmt = check_fmt(boot->ramdisk); } char fmt[16]; get_fmt_name(boot->k_fmt, fmt); fprintf(stderr, "KERNEL_FMT [%s]\n", fmt); get_fmt_name(boot->r_fmt, fmt); fprintf(stderr, "RAMDISK_FMT [%s]\n", fmt); return boot->flags & CHROMEOS_FLAG ? CHROMEOS_RET : ((is_blk && boot->tail_size < 500 * 1024) ? INSUF_BLOCK_RET : 0); default: continue; } } LOGE("No boot image magic found!\n"); } int unpack(const char *image) { boot_img boot; int ret = parse_img(image, &boot); int fd; // Dump kernel if (COMPRESSED(boot.k_fmt)) { fd = creat(KERNEL_FILE, 0644); decomp(boot.k_fmt, fd, boot.kernel, header(&boot, kernel_size)); close(fd); } else { dump(boot.kernel, header(&boot, kernel_size), KERNEL_FILE); } if (boot.dt_size) { // Dump dtb dump(boot.dtb, boot.dt_size, DTB_FILE); } // Dump ramdisk if (COMPRESSED(boot.r_fmt)) { fd = creat(RAMDISK_FILE, 0644); decomp(boot.r_fmt, fd, boot.ramdisk, header(&boot, ramdisk_size)); close(fd); } else { dump(boot.ramdisk, header(&boot, ramdisk_size), RAMDISK_FILE ".raw"); LOGE("Unknown ramdisk format! Dumped to %s\n", RAMDISK_FILE ".raw"); } if (header(&boot, second_size)) { // Dump second dump(boot.second, header(&boot, second_size), SECOND_FILE); } if (header(&boot, extra_size)) { // Dump extra dump(boot.extra, header(&boot, extra_size), EXTRA_FILE); } clean_boot(&boot); return ret; } #define file_align() write_zero(fd, align_off(lseek(fd, 0, SEEK_CUR) - header_off, header(&boot, page_size))) void repack(const char* orig_image, const char* out_image) { boot_img boot; off_t header_off, kernel_off, ramdisk_off, second_off, extra_off; // Parse original image parse_img(orig_image, &boot); fprintf(stderr, "Repack to boot image: [%s]\n", out_image); // Create new image int fd = creat(out_image, 0644); if (boot.flags & DHTB_FLAG) { // Skip DHTB header write_zero(fd, 512); } else if (boot.flags & BLOB_FLAG) { // Skip blob header write_zero(fd, sizeof(blob_hdr)); } else if (boot.flags & NOOK_FLAG) { restore_buf(fd, boot.map_addr, NOOK_PRE_HEADER_SZ); } // Skip a page for header header_off = lseek(fd, 0, SEEK_CUR); write_zero(fd, header(&boot, page_size)); // kernel kernel_off = lseek(fd, 0, SEEK_CUR); if (boot.flags & MTK_KERNEL) { // Skip MTK header write_zero(fd, 512); } if (COMPRESSED(boot.k_fmt)) { size_t raw_size; void *kernel_raw; mmap_ro(KERNEL_FILE, &kernel_raw, &raw_size); lheader(&boot, kernel_size, = comp(boot.k_fmt, fd, kernel_raw, raw_size)); munmap(kernel_raw, raw_size); } else { lheader(&boot, kernel_size, = restore(KERNEL_FILE, fd)); } // dtb if (boot.dt_size && access(DTB_FILE, R_OK) == 0) { lheader(&boot, kernel_size, += restore(DTB_FILE, fd)); } file_align(); // ramdisk ramdisk_off = lseek(fd, 0, SEEK_CUR); if (boot.flags & MTK_RAMDISK) { // Skip MTK header write_zero(fd, 512); } if (access(RAMDISK_FILE, R_OK) == 0) { // If we found raw cpio, compress to original format size_t cpio_size; void *cpio; mmap_ro(RAMDISK_FILE, &cpio, &cpio_size); lheader(&boot, ramdisk_size, = comp(boot.r_fmt, fd, cpio, cpio_size)); munmap(cpio, cpio_size); } else { // Find compressed ramdisk char name[PATH_MAX]; int found = 0; for (int i = 0; SUP_EXT_LIST[i]; ++i) { sprintf(name, "%s.%s", RAMDISK_FILE, SUP_EXT_LIST[i]); if (access(name, R_OK) == 0) { found = 1; break; } } if (!found) LOGE("No ramdisk exists!\n"); lheader(&boot, ramdisk_size, = restore(name, fd)); } file_align(); // second second_off = lseek(fd, 0, SEEK_CUR); if (header(&boot, second_size) && access(SECOND_FILE, R_OK) == 0) { lheader(&boot, second_size, = restore(SECOND_FILE, fd)); file_align(); } // extra extra_off = lseek(fd, 0, SEEK_CUR); if (header(&boot, extra_size) && access(EXTRA_FILE, R_OK) == 0) { lheader(&boot, extra_size, = restore(EXTRA_FILE, fd)); file_align(); } // Append tail info if (boot.flags & SEANDROID_FLAG) { restore_buf(fd, SEANDROID_MAGIC "\xFF\xFF\xFF\xFF", 20); } if (boot.flags & LG_BUMP_FLAG) { restore_buf(fd, LG_BUMP_MAGIC, 16); } close(fd); // Map output image as rw munmap(boot.map_addr, boot.map_size); mmap_rw(out_image, &boot.map_addr, &boot.map_size); // MTK headers if (boot.flags & MTK_KERNEL) { boot.k_hdr->size = header(&boot, kernel_size); lheader(&boot, kernel_size, += 512); memcpy(boot.map_addr + kernel_off, boot.k_hdr, sizeof(mtk_hdr)); } if (boot.flags & MTK_RAMDISK) { boot.r_hdr->size = header(&boot, ramdisk_size); lheader(&boot, ramdisk_size, += 512); memcpy(boot.map_addr + ramdisk_off, boot.r_hdr, sizeof(mtk_hdr)); } // Update checksum HASH_CTX ctx; (boot.flags & SHA256_FLAG) ? SHA256_init(&ctx) : SHA_init(&ctx); uint32_t size = header(&boot, kernel_size); HASH_update(&ctx, boot.map_addr + kernel_off, size); HASH_update(&ctx, &size, sizeof(size)); size = header(&boot, ramdisk_size); HASH_update(&ctx, boot.map_addr + ramdisk_off, size); HASH_update(&ctx, &size, sizeof(size)); size = header(&boot, second_size); HASH_update(&ctx, boot.map_addr + second_off, size); HASH_update(&ctx, &size, sizeof(size)); size = header(&boot, extra_size); if (size) { HASH_update(&ctx, boot.map_addr + extra_off, size); HASH_update(&ctx, &size, sizeof(size)); } memset(header(&boot, id), 0, 32); memcpy(header(&boot, id), HASH_final(&ctx), (boot.flags & SHA256_FLAG) ? SHA256_DIGEST_SIZE : SHA_DIGEST_SIZE); // Print new image info print_hdr(&boot); // Main header memcpy(boot.map_addr + header_off, boot.hdr, (boot.flags & PXA_FLAG) ? sizeof(pxa_boot_img_hdr) : sizeof(boot_img_hdr)); if (boot.flags & DHTB_FLAG) { // DHTB header dhtb_hdr *hdr = boot.map_addr; memcpy(hdr, DHTB_MAGIC, 8); hdr->size = boot.map_size - 512; SHA256_hash(boot.map_addr + 512, hdr->size, hdr->checksum); } else if (boot.flags & BLOB_FLAG) { // Blob headers boot.b_hdr->size = boot.map_size - sizeof(blob_hdr); memcpy(boot.map_addr, boot.b_hdr, sizeof(blob_hdr)); } clean_boot(&boot); }