#include #include #include #include #include #include #include #include #include #include #include #include "magiskboot.hpp" #include "compress.hpp" using namespace std; #define bwrite this->base->write constexpr size_t CHUNK = 0x40000; constexpr size_t LZ4_UNCOMPRESSED = 0x800000; constexpr size_t LZ4_COMPRESSED = LZ4_COMPRESSBOUND(LZ4_UNCOMPRESSED); class out_stream : public filter_stream { using filter_stream::filter_stream; using stream::read; }; class gz_strm : public out_stream { public: bool write(const void *buf, size_t len) override { return len == 0 || do_write(buf, len, Z_NO_FLUSH); } ~gz_strm() override { do_write(nullptr, 0, Z_FINISH); switch(mode) { case DECODE: inflateEnd(&strm); break; case ENCODE: deflateEnd(&strm); break; default: break; } } protected: enum mode_t { DECODE, ENCODE, WAIT, COPY } mode; gz_strm(mode_t mode, stream_ptr &&base) : out_stream(std::move(base)), mode(mode), strm{}, outbuf{0} { switch(mode) { case DECODE: inflateInit2(&strm, 15 | 16); break; case ENCODE: deflateInit2(&strm, 9, Z_DEFLATED, 15 | 16, 8, Z_DEFAULT_STRATEGY); break; default: break; } } private: z_stream strm; uint8_t outbuf[CHUNK]; bool do_write(const void *buf, size_t len, int flush) { if (mode == WAIT) { if (len == 0) return true; Bytef b[1] = {0x1f}; if (*(Bytef *)buf == 0x8b) { mode = DECODE; inflateReset(&strm); strm.next_in = b; strm.avail_in = 1; inflate(&strm, flush); } else { mode = COPY; bwrite(b, 1); } } strm.next_in = (Bytef *) buf; strm.avail_in = len; do { int code; strm.next_out = outbuf; strm.avail_out = sizeof(outbuf); switch(mode) { case DECODE: code = inflate(&strm, flush); break; case ENCODE: code = deflate(&strm, flush); break; case COPY: return bwrite(buf, len); default: // should have been handled return false; } if (code == Z_STREAM_ERROR) { LOGW("gzip %s failed (%d)\n", mode ? "encode" : "decode", code); return false; } if (!bwrite(outbuf, sizeof(outbuf) - strm.avail_out)) return false; if (mode == DECODE && code == Z_STREAM_END) { if (strm.avail_in > 1) { if (strm.next_in[0] == 0x1f && strm.next_in[1] == 0x8b) { // There is still data in the stream, we need to reset the stream // and continue decoding inflateReset(&strm); strm.avail_out = 0; continue; } } else if (strm.avail_in == 1) { if (strm.next_in[0] == 0x1f) { // If there is only one byte left, we need to wait for the next byte // to determine if it is a gzip header mode = WAIT; return true; } } else { // The next inflate won't consume any data but fallback // to the previous two conditions return true; } // There is still data in the stream, we need to copy it mode = COPY; bwrite(strm.next_in, strm.avail_in); } } while (strm.avail_out == 0); return true; } }; class gz_decoder : public gz_strm { public: explicit gz_decoder(stream_ptr &&base) : gz_strm(DECODE, std::move(base)) {}; }; class gz_encoder : public gz_strm { public: explicit gz_encoder(stream_ptr &&base) : gz_strm(ENCODE, std::move(base)) {}; }; class zopfli_encoder : public chunk_out_stream { public: explicit zopfli_encoder(stream_ptr &&base) : chunk_out_stream(std::move(base), ZOPFLI_MASTER_BLOCK_SIZE), zo{}, out(nullptr), outsize(0), crc(crc32_z(0L, Z_NULL, 0)), in_total(0), bp(0) { ZopfliInitOptions(&zo); // This config is already better than gzip -9 zo.numiterations = 1; zo.blocksplitting = 0; ZOPFLI_APPEND_DATA(31, &out, &outsize); /* ID1 */ ZOPFLI_APPEND_DATA(139, &out, &outsize); /* ID2 */ ZOPFLI_APPEND_DATA(8, &out, &outsize); /* CM */ ZOPFLI_APPEND_DATA(0, &out, &outsize); /* FLG */ /* MTIME */ ZOPFLI_APPEND_DATA(0, &out, &outsize); ZOPFLI_APPEND_DATA(0, &out, &outsize); ZOPFLI_APPEND_DATA(0, &out, &outsize); ZOPFLI_APPEND_DATA(0, &out, &outsize); ZOPFLI_APPEND_DATA(2, &out, &outsize); /* XFL, 2 indicates best compression. */ ZOPFLI_APPEND_DATA(3, &out, &outsize); /* OS follows Unix conventions. */ } ~zopfli_encoder() override { finalize(); /* CRC */ ZOPFLI_APPEND_DATA(crc % 256, &out, &outsize); ZOPFLI_APPEND_DATA((crc >> 8) % 256, &out, &outsize); ZOPFLI_APPEND_DATA((crc >> 16) % 256, &out, &outsize); ZOPFLI_APPEND_DATA((crc >> 24) % 256, &out, &outsize); /* ISIZE */ ZOPFLI_APPEND_DATA(in_total % 256, &out, &outsize); ZOPFLI_APPEND_DATA((in_total >> 8) % 256, &out, &outsize); ZOPFLI_APPEND_DATA((in_total >> 16) % 256, &out, &outsize); ZOPFLI_APPEND_DATA((in_total >> 24) % 256, &out, &outsize); bwrite(out, outsize); free(out); } protected: bool write_chunk(const void *buf, size_t len, bool final) override { if (len == 0) return true; auto in = static_cast(buf); in_total += len; crc = crc32_z(crc, in, len); ZopfliDeflatePart(&zo, 2, final, in, 0, len, &bp, &out, &outsize); // ZOPFLI_APPEND_DATA is extremely dumb, so we always preserve the // last byte to make sure that realloc is used instead of malloc if (!bwrite(out, outsize - 1)) return false; out[0] = out[outsize - 1]; outsize = 1; return true; } private: ZopfliOptions zo; unsigned char *out; size_t outsize; unsigned long crc; uint32_t in_total; unsigned char bp; }; class bz_strm : public out_stream { public: bool write(const void *buf, size_t len) override { return len == 0 || do_write(buf, len, BZ_RUN); } ~bz_strm() override { switch(mode) { case DECODE: BZ2_bzDecompressEnd(&strm); break; case ENCODE: do_write(nullptr, 0, BZ_FINISH); BZ2_bzCompressEnd(&strm); break; } } protected: enum mode_t { DECODE, ENCODE } mode; bz_strm(mode_t mode, stream_ptr &&base) : out_stream(std::move(base)), mode(mode), strm{}, outbuf{0} { switch(mode) { case DECODE: BZ2_bzDecompressInit(&strm, 0, 0); break; case ENCODE: BZ2_bzCompressInit(&strm, 9, 0, 0); break; } } private: bz_stream strm; char outbuf[CHUNK]; bool do_write(const void *buf, size_t len, int flush) { strm.next_in = (char *) buf; strm.avail_in = len; do { int code; strm.avail_out = sizeof(outbuf); strm.next_out = outbuf; switch(mode) { case DECODE: code = BZ2_bzDecompress(&strm); break; case ENCODE: code = BZ2_bzCompress(&strm, flush); break; } if (code < 0) { LOGW("bzip2 %s failed (%d)\n", mode ? "encode" : "decode", code); return false; } if (!bwrite(outbuf, sizeof(outbuf) - strm.avail_out)) return false; } while (strm.avail_out == 0); return true; } }; class bz_decoder : public bz_strm { public: explicit bz_decoder(stream_ptr &&base) : bz_strm(DECODE, std::move(base)) {}; }; class bz_encoder : public bz_strm { public: explicit bz_encoder(stream_ptr &&base) : bz_strm(ENCODE, std::move(base)) {}; }; class lzma_strm : public out_stream { public: bool write(const void *buf, size_t len) override { return len == 0 || do_write(buf, len, LZMA_RUN); } ~lzma_strm() override { do_write(nullptr, 0, LZMA_FINISH); lzma_end(&strm); } protected: enum mode_t { DECODE, ENCODE_XZ, ENCODE_LZMA } mode; lzma_strm(mode_t mode, stream_ptr &&base) : out_stream(std::move(base)), mode(mode), strm(LZMA_STREAM_INIT), outbuf{0} { lzma_options_lzma opt; // Initialize preset lzma_lzma_preset(&opt, 9); lzma_filter filters[] = { { .id = LZMA_FILTER_LZMA2, .options = &opt }, { .id = LZMA_VLI_UNKNOWN, .options = nullptr }, }; lzma_ret code; switch(mode) { case DECODE: code = lzma_auto_decoder(&strm, UINT64_MAX, 0); break; case ENCODE_XZ: code = lzma_stream_encoder(&strm, filters, LZMA_CHECK_CRC32); break; case ENCODE_LZMA: code = lzma_alone_encoder(&strm, &opt); break; } if (code != LZMA_OK) { LOGE("LZMA initialization failed (%d)\n", code); } } private: lzma_stream strm; uint8_t outbuf[CHUNK]; bool do_write(const void *buf, size_t len, lzma_action flush) { strm.next_in = (uint8_t *) buf; strm.avail_in = len; do { strm.avail_out = sizeof(outbuf); strm.next_out = outbuf; int code = lzma_code(&strm, flush); if (code != LZMA_OK && code != LZMA_STREAM_END) { LOGW("LZMA %s failed (%d)\n", mode ? "encode" : "decode", code); return false; } if (!bwrite(outbuf, sizeof(outbuf) - strm.avail_out)) return false; } while (strm.avail_out == 0); return true; } }; class lzma_decoder : public lzma_strm { public: explicit lzma_decoder(stream_ptr &&base) : lzma_strm(DECODE, std::move(base)) {} }; class xz_encoder : public lzma_strm { public: explicit xz_encoder(stream_ptr &&base) : lzma_strm(ENCODE_XZ, std::move(base)) {} }; class lzma_encoder : public lzma_strm { public: explicit lzma_encoder(stream_ptr &&base) : lzma_strm(ENCODE_LZMA, std::move(base)) {} }; class LZ4F_decoder : public out_stream { public: explicit LZ4F_decoder(stream_ptr &&base) : out_stream(std::move(base)), ctx(nullptr), outbuf(nullptr), outCapacity(0) { LZ4F_createDecompressionContext(&ctx, LZ4F_VERSION); } ~LZ4F_decoder() override { LZ4F_freeDecompressionContext(ctx); delete[] outbuf; } bool write(const void *buf, size_t len) override { auto in = reinterpret_cast(buf); if (!outbuf) { size_t read = len; LZ4F_frameInfo_t info; LZ4F_getFrameInfo(ctx, &info, in, &read); switch (info.blockSizeID) { case LZ4F_default: case LZ4F_max64KB: outCapacity = 1 << 16; break; case LZ4F_max256KB: outCapacity = 1 << 18; break; case LZ4F_max1MB: outCapacity = 1 << 20; break; case LZ4F_max4MB: outCapacity = 1 << 22; break; } outbuf = new uint8_t[outCapacity]; in += read; len -= read; } size_t read, write; LZ4F_errorCode_t code; do { read = len; write = outCapacity; code = LZ4F_decompress(ctx, outbuf, &write, in, &read, nullptr); if (LZ4F_isError(code)) { LOGW("LZ4F decode error: %s\n", LZ4F_getErrorName(code)); return false; } len -= read; in += read; if (!bwrite(outbuf, write)) return false; } while (len != 0 || write != 0); return true; } private: LZ4F_decompressionContext_t ctx; uint8_t *outbuf; size_t outCapacity; }; class LZ4F_encoder : public out_stream { public: explicit LZ4F_encoder(stream_ptr &&base) : out_stream(std::move(base)), ctx(nullptr), out_buf(nullptr), outCapacity(0) { LZ4F_createCompressionContext(&ctx, LZ4F_VERSION); } bool write(const void *buf, size_t len) override { if (!out_buf) { LZ4F_preferences_t prefs { .frameInfo = { .blockSizeID = LZ4F_max4MB, .blockMode = LZ4F_blockIndependent, .contentChecksumFlag = LZ4F_contentChecksumEnabled, .blockChecksumFlag = LZ4F_noBlockChecksum, }, .compressionLevel = 9, .autoFlush = 1, }; outCapacity = LZ4F_compressBound(BLOCK_SZ, &prefs); out_buf = new uint8_t[outCapacity]; size_t write = LZ4F_compressBegin(ctx, out_buf, outCapacity, &prefs); if (!bwrite(out_buf, write)) return false; } if (len == 0) return true; auto in = reinterpret_cast(buf); size_t read, write; do { read = len > BLOCK_SZ ? BLOCK_SZ : len; write = LZ4F_compressUpdate(ctx, out_buf, outCapacity, in, read, nullptr); if (LZ4F_isError(write)) { LOGW("LZ4F encode error: %s\n", LZ4F_getErrorName(write)); return false; } len -= read; in += read; if (!bwrite(out_buf, write)) return false; } while (len != 0); return true; } ~LZ4F_encoder() override { size_t len = LZ4F_compressEnd(ctx, out_buf, outCapacity, nullptr); if (LZ4F_isError(len)) { LOGE("LZ4F end of frame error: %s\n", LZ4F_getErrorName(len)); } else if (!bwrite(out_buf, len)) { LOGE("LZ4F end of frame error: I/O error\n"); } LZ4F_freeCompressionContext(ctx); delete[] out_buf; } private: LZ4F_compressionContext_t ctx; uint8_t *out_buf; size_t outCapacity; static constexpr size_t BLOCK_SZ = 1 << 22; }; class LZ4_decoder : public chunk_out_stream { public: explicit LZ4_decoder(stream_ptr &&base) : chunk_out_stream(std::move(base), LZ4_COMPRESSED, sizeof(block_sz)), out_buf(new char[LZ4_UNCOMPRESSED]), block_sz(0) {} ~LZ4_decoder() override { finalize(); delete[] out_buf; } protected: bool write_chunk(const void *buf, size_t len, bool final) override { // This is an error if (len != chunk_sz) return false; auto in = reinterpret_cast(buf); if (block_sz == 0) { memcpy(&block_sz, in, sizeof(block_sz)); if (block_sz == 0x184C2102) { // This is actually the lz4 magic, read the next 4 bytes block_sz = 0; chunk_sz = sizeof(block_sz); return true; } // Read the next block chunk chunk_sz = block_sz; return true; } else { int r = LZ4_decompress_safe(in, out_buf, block_sz, LZ4_UNCOMPRESSED); chunk_sz = sizeof(block_sz); block_sz = 0; if (r < 0) { LOGW("LZ4HC decompression failure (%d)\n", r); return false; } return bwrite(out_buf, r); } } private: char *out_buf; uint32_t block_sz; }; class LZ4_encoder : public chunk_out_stream { public: explicit LZ4_encoder(stream_ptr &&base, bool lg) : chunk_out_stream(std::move(base), LZ4_UNCOMPRESSED), out_buf(new char[LZ4_COMPRESSED]), lg(lg), in_total(0) { bwrite("\x02\x21\x4c\x18", 4); } ~LZ4_encoder() override { finalize(); if (lg) bwrite(&in_total, sizeof(in_total)); delete[] out_buf; } protected: bool write_chunk(const void *buf, size_t len, bool final) override { auto in = static_cast(buf); uint32_t block_sz = LZ4_compress_HC(in, out_buf, len, LZ4_COMPRESSED, LZ4HC_CLEVEL_MAX); if (block_sz == 0) { LOGW("LZ4HC compression failure\n"); return false; } if (bwrite(&block_sz, sizeof(block_sz)) && bwrite(out_buf, block_sz)) { in_total += len; return true; } return false; } private: char *out_buf; bool lg; uint32_t in_total; }; filter_strm_ptr get_encoder(format_t type, stream_ptr &&base) { switch (type) { case XZ: return make_unique(std::move(base)); case LZMA: return make_unique(std::move(base)); case BZIP2: return make_unique(std::move(base)); case LZ4: return make_unique(std::move(base)); case LZ4_LEGACY: return make_unique(std::move(base), false); case LZ4_LG: return make_unique(std::move(base), true); case ZOPFLI: return make_unique(std::move(base)); case GZIP: default: return make_unique(std::move(base)); } } filter_strm_ptr get_decoder(format_t type, stream_ptr &&base) { switch (type) { case XZ: case LZMA: return make_unique(std::move(base)); case BZIP2: return make_unique(std::move(base)); case LZ4: return make_unique(std::move(base)); case LZ4_LEGACY: case LZ4_LG: return make_unique(std::move(base)); case ZOPFLI: case GZIP: default: return make_unique(std::move(base)); } } void decompress(char *infile, const char *outfile) { bool in_std = infile == "-"sv; bool rm_in = false; FILE *in_fp = in_std ? stdin : xfopen(infile, "re"); stream_ptr strm; char buf[4096]; size_t len; while ((len = fread(buf, 1, sizeof(buf), in_fp))) { if (!strm) { format_t type = check_fmt(buf, len); fprintf(stderr, "Detected format: [%s]\n", fmt2name[type]); if (!COMPRESSED(type)) LOGE("Input file is not a supported compressed type!\n"); /* If user does not provide outfile, infile has to be either * .[ext], or '-'. Outfile will be either or '-'. * If the input does not have proper format, abort */ char *ext = nullptr; if (outfile == nullptr) { outfile = infile; if (!in_std) { ext = strrchr(infile, '.'); if (ext == nullptr || strcmp(ext, fmt2ext[type]) != 0) LOGE("Input file is not a supported type!\n"); // Strip out extension and remove input *ext = '\0'; rm_in = true; fprintf(stderr, "Decompressing to [%s]\n", outfile); } } FILE *out_fp = outfile == "-"sv ? stdout : xfopen(outfile, "we"); strm = get_decoder(type, make_unique(out_fp)); if (ext) *ext = '.'; } if (!strm->write(buf, len)) LOGE("Decompression error!\n"); } strm.reset(nullptr); fclose(in_fp); if (rm_in) unlink(infile); } void compress(const char *method, const char *infile, const char *outfile) { format_t fmt = name2fmt[method]; if (fmt == UNKNOWN) LOGE("Unknown compression method: [%s]\n", method); bool in_std = infile == "-"sv; bool rm_in = false; FILE *in_fp = in_std ? stdin : xfopen(infile, "re"); FILE *out_fp; if (outfile == nullptr) { if (in_std) { out_fp = stdout; } else { /* If user does not provide outfile and infile is not * STDIN, output to .[ext] */ string tmp(infile); tmp += fmt2ext[fmt]; out_fp = xfopen(tmp.data(), "we"); fprintf(stderr, "Compressing to [%s]\n", tmp.data()); rm_in = true; } } else { out_fp = outfile == "-"sv ? stdout : xfopen(outfile, "we"); } auto strm = get_encoder(fmt, make_unique(out_fp)); char buf[4096]; size_t len; while ((len = fread(buf, 1, sizeof(buf), in_fp))) { if (!strm->write(buf, len)) LOGE("Compression error!\n"); } strm.reset(nullptr); fclose(in_fp); if (rm_in) unlink(infile); }