#include #include #include #include #include #include "boot-rs.hpp" #include "bootimg.hpp" #include "magiskboot.hpp" #include "compress.hpp" using namespace std; #define PADDING 15 #define SHA256_DIGEST_SIZE 32 #define SHA_DIGEST_SIZE 20 static void decompress(format_t type, int fd, const void *in, size_t size) { auto ptr = get_decoder(type, make_unique(fd)); ptr->write(in, size); } static off_t compress(format_t type, int fd, const void *in, size_t size) { auto prev = lseek(fd, 0, SEEK_CUR); { auto strm = get_encoder(type, make_unique(fd)); strm->write(in, size); } auto now = lseek(fd, 0, SEEK_CUR); return now - prev; } static void dump(const void *buf, size_t size, const char *filename) { if (size == 0) return; int fd = creat(filename, 0644); xwrite(fd, buf, size); close(fd); } static size_t restore(int fd, const char *filename) { int ifd = xopen(filename, O_RDONLY); size_t size = lseek(ifd, 0, SEEK_END); lseek(ifd, 0, SEEK_SET); xsendfile(fd, ifd, nullptr, size); close(ifd); return size; } void dyn_img_hdr::print() const { uint32_t ver = header_version(); fprintf(stderr, "%-*s [%u]\n", PADDING, "HEADER_VER", ver); if (!is_vendor()) fprintf(stderr, "%-*s [%u]\n", PADDING, "KERNEL_SZ", kernel_size()); fprintf(stderr, "%-*s [%u]\n", PADDING, "RAMDISK_SZ", ramdisk_size()); if (ver < 3) fprintf(stderr, "%-*s [%u]\n", PADDING, "SECOND_SZ", second_size()); if (ver == 0) fprintf(stderr, "%-*s [%u]\n", PADDING, "EXTRA_SZ", extra_size()); if (ver == 1 || ver == 2) fprintf(stderr, "%-*s [%u]\n", PADDING, "RECOV_DTBO_SZ", recovery_dtbo_size()); if (ver == 2 || is_vendor()) fprintf(stderr, "%-*s [%u]\n", PADDING, "DTB_SZ", dtb_size()); if (ver == 4 && is_vendor()) fprintf(stderr, "%-*s [%u]\n", PADDING, "BOOTCONFIG_SZ", bootconfig_size()); if (uint32_t os_ver = os_version()) { int a,b,c,y,m = 0; int version = os_ver >> 11; int patch_level = os_ver & 0x7ff; a = (version >> 14) & 0x7f; b = (version >> 7) & 0x7f; c = version & 0x7f; fprintf(stderr, "%-*s [%d.%d.%d]\n", PADDING, "OS_VERSION", a, b, c); y = (patch_level >> 4) + 2000; m = patch_level & 0xf; fprintf(stderr, "%-*s [%d-%02d]\n", PADDING, "OS_PATCH_LEVEL", y, m); } fprintf(stderr, "%-*s [%u]\n", PADDING, "PAGESIZE", page_size()); if (const char *n = name()) { fprintf(stderr, "%-*s [%s]\n", PADDING, "NAME", n); } fprintf(stderr, "%-*s [%.*s%.*s]\n", PADDING, "CMDLINE", BOOT_ARGS_SIZE, cmdline(), BOOT_EXTRA_ARGS_SIZE, extra_cmdline()); if (const char *checksum = id()) { fprintf(stderr, "%-*s [", PADDING, "CHECKSUM"); for (int i = 0; i < SHA256_DIGEST_SIZE; ++i) fprintf(stderr, "%02hhx", checksum[i]); fprintf(stderr, "]\n"); } } void dyn_img_hdr::dump_hdr_file() const { FILE *fp = xfopen(HEADER_FILE, "w"); if (name()) fprintf(fp, "name=%s\n", name()); fprintf(fp, "cmdline=%.*s%.*s\n", BOOT_ARGS_SIZE, cmdline(), BOOT_EXTRA_ARGS_SIZE, extra_cmdline()); uint32_t ver = os_version(); if (ver) { int a, b, c, y, m; int version, patch_level; version = ver >> 11; patch_level = ver & 0x7ff; a = (version >> 14) & 0x7f; b = (version >> 7) & 0x7f; c = version & 0x7f; fprintf(fp, "os_version=%d.%d.%d\n", a, b, c); y = (patch_level >> 4) + 2000; m = patch_level & 0xf; fprintf(fp, "os_patch_level=%d-%02d\n", y, m); } fclose(fp); } void dyn_img_hdr::load_hdr_file() { parse_prop_file(HEADER_FILE, [=, this](string_view key, string_view value) -> bool { if (key == "name" && name()) { memset(name(), 0, 16); memcpy(name(), value.data(), value.length() > 15 ? 15 : value.length()); } else if (key == "cmdline") { memset(cmdline(), 0, BOOT_ARGS_SIZE); memset(extra_cmdline(), 0, BOOT_EXTRA_ARGS_SIZE); if (value.length() > BOOT_ARGS_SIZE) { memcpy(cmdline(), value.data(), BOOT_ARGS_SIZE); auto len = std::min(value.length() - BOOT_ARGS_SIZE, (size_t) BOOT_EXTRA_ARGS_SIZE); memcpy(extra_cmdline(), &value[BOOT_ARGS_SIZE], len); } else { memcpy(cmdline(), value.data(), value.length()); } } else if (key == "os_version") { int patch_level = os_version() & 0x7ff; int a, b, c; sscanf(value.data(), "%d.%d.%d", &a, &b, &c); os_version() = (((a << 14) | (b << 7) | c) << 11) | patch_level; } else if (key == "os_patch_level") { int os_ver = os_version() >> 11; int y, m; sscanf(value.data(), "%d-%d", &y, &m); y -= 2000; os_version() = (os_ver << 11) | (y << 4) | m; } return true; }); } boot_img::boot_img(const char *image) : map(image) { fprintf(stderr, "Parsing boot image: [%s]\n", image); for (const uint8_t *addr = map.buf(); addr < map.buf() + map.sz(); ++addr) { format_t fmt = check_fmt(addr, map.sz()); switch (fmt) { case CHROMEOS: // chromeos require external signing flags[CHROMEOS_FLAG] = true; addr += 65535; break; case DHTB: flags[DHTB_FLAG] = true; flags[SEANDROID_FLAG] = true; fprintf(stderr, "DHTB_HDR\n"); addr += sizeof(dhtb_hdr) - 1; break; case BLOB: flags[BLOB_FLAG] = true; fprintf(stderr, "TEGRA_BLOB\n"); addr += sizeof(blob_hdr) - 1; break; case AOSP: case AOSP_VENDOR: if (parse_image(addr, fmt)) return; // fallthrough default: break; } } exit(1); } boot_img::~boot_img() { delete hdr; } struct [[gnu::packed]] fdt_header { struct fdt32_t { uint32_t byte0: 8; uint32_t byte1: 8; uint32_t byte2: 8; uint32_t byte3: 8; constexpr operator uint32_t() const { return bit_cast(fdt32_t { .byte0 = byte3, .byte1 = byte2, .byte2 = byte1, .byte3 = byte0 }); } }; struct node_header { fdt32_t tag; char name[0]; }; fdt32_t magic; /* magic word FDT_MAGIC */ fdt32_t totalsize; /* total size of DT block */ fdt32_t off_dt_struct; /* offset to structure */ fdt32_t off_dt_strings; /* offset to strings */ fdt32_t off_mem_rsvmap; /* offset to memory reserve map */ fdt32_t version; /* format version */ fdt32_t last_comp_version; /* last compatible version */ /* version 2 fields below */ fdt32_t boot_cpuid_phys; /* Which physical CPU id we're booting on */ /* version 3 fields below */ fdt32_t size_dt_strings; /* size of the strings block */ /* version 17 fields below */ fdt32_t size_dt_struct; /* size of the structure block */ }; static int find_dtb_offset(const uint8_t *buf, unsigned sz) { const uint8_t * const end = buf + sz; for (auto curr = buf; curr < end; curr += sizeof(fdt_header)) { curr = static_cast(memmem(curr, end - curr, DTB_MAGIC, sizeof(fdt_header::fdt32_t))); if (curr == nullptr) return -1; auto fdt_hdr = reinterpret_cast(curr); // Check that fdt_header.totalsize does not overflow kernel image size uint32_t totalsize = fdt_hdr->totalsize; if (totalsize > end - curr) continue; // Check that fdt_header.off_dt_struct does not overflow kernel image size uint32_t off_dt_struct = fdt_hdr->off_dt_struct; if (off_dt_struct > end - curr) continue; // Check that fdt_node_header.tag of first node is FDT_BEGIN_NODE auto fdt_node_hdr = reinterpret_cast(curr + off_dt_struct); if (fdt_node_hdr->tag != 0x1u) continue; return curr - buf; } return -1; } static format_t check_fmt_lg(const uint8_t *buf, unsigned sz) { format_t fmt = check_fmt(buf, sz); if (fmt == LZ4_LEGACY) { // We need to check if it is LZ4_LG uint32_t off = 4; uint32_t block_sz; while (off + sizeof(block_sz) <= sz) { memcpy(&block_sz, buf + off, sizeof(block_sz)); off += sizeof(block_sz); if (off + block_sz > sz) return LZ4_LG; off += block_sz; } } return fmt; } #define CMD_MATCH(s) BUFFER_MATCH(h->cmdline, s) pair boot_img::create_hdr(const uint8_t *addr, format_t type) { if (type == AOSP_VENDOR) { fprintf(stderr, "VENDOR_BOOT_HDR\n"); auto h = reinterpret_cast(addr); switch (h->header_version) { case 4: return make_pair(addr, new dyn_img_vnd_v4(addr)); default: return make_pair(addr, new dyn_img_vnd_v3(addr)); } } auto h = reinterpret_cast(addr); if (h->page_size >= 0x02000000) { fprintf(stderr, "PXA_BOOT_HDR\n"); return make_pair(addr, new dyn_img_pxa(addr)); } auto make_hdr = [](const uint8_t *ptr) -> dyn_img_hdr * { auto h = reinterpret_cast(ptr); if (memcmp(h->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE) != 0) return nullptr; switch (h->header_version) { case 1: return new dyn_img_v1(ptr); case 2: return new dyn_img_v2(ptr); case 3: return new dyn_img_v3(ptr); case 4: return new dyn_img_v4(ptr); default: return new dyn_img_v0(ptr); } }; // For NOOKHD and ACCLAIM, the entire boot image is shifted by a fixed offset. // For AMONET, only the header is internally shifted by a fixed offset. if (BUFFER_CONTAIN(addr, AMONET_MICROLOADER_SZ, AMONET_MICROLOADER_MAGIC) && BUFFER_MATCH(addr + AMONET_MICROLOADER_SZ, BOOT_MAGIC)) { flags[AMONET_FLAG] = true; fprintf(stderr, "AMONET_MICROLOADER\n"); // The real header is shifted, copy to temporary buffer h = reinterpret_cast(addr + AMONET_MICROLOADER_SZ); if (memcmp(h->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE) != 0) return make_pair(addr, nullptr); auto real_hdr_sz = h->page_size - AMONET_MICROLOADER_SZ; heap_data copy(h->page_size); memcpy(copy.buf(), h, real_hdr_sz); return make_pair(addr, make_hdr(copy.buf())); } if (CMD_MATCH(NOOKHD_RL_MAGIC) || CMD_MATCH(NOOKHD_GL_MAGIC) || CMD_MATCH(NOOKHD_GR_MAGIC) || CMD_MATCH(NOOKHD_EB_MAGIC) || CMD_MATCH(NOOKHD_ER_MAGIC)) { flags[NOOKHD_FLAG] = true; fprintf(stderr, "NOOKHD_LOADER\n"); addr += NOOKHD_PRE_HEADER_SZ; } else if (BUFFER_MATCH(h->name, ACCLAIM_MAGIC)) { flags[ACCLAIM_FLAG] = true; fprintf(stderr, "ACCLAIM_LOADER\n"); addr += ACCLAIM_PRE_HEADER_SZ; } return make_pair(addr, make_hdr(addr)); } static const char *vendor_ramdisk_type(int type) { switch (type) { case VENDOR_RAMDISK_TYPE_PLATFORM: return "platform"; case VENDOR_RAMDISK_TYPE_RECOVERY: return "recovery"; case VENDOR_RAMDISK_TYPE_DLKM: return "dlkm"; case VENDOR_RAMDISK_TYPE_NONE: default: return "none"; } } #define assert_off() \ if ((base_addr + off) > (map.buf() + map.sz())) { \ fprintf(stderr, "Corrupted boot image!\n"); \ return false; \ } #define get_block(name) \ name = base_addr + off; \ off += hdr->name##_size(); \ off = align_to(off, hdr->page_size()); \ assert_off(); bool boot_img::parse_image(const uint8_t *p, format_t type) { auto [base_addr, hdr] = create_hdr(p, type); if (hdr == nullptr) { fprintf(stderr, "Invalid boot image header!\n"); return false; } if (const char *id = hdr->id()) { for (int i = SHA_DIGEST_SIZE + 4; i < SHA256_DIGEST_SIZE; ++i) { if (id[i]) { flags[SHA256_FLAG] = true; break; } } } hdr->print(); size_t off = hdr->hdr_space(); get_block(kernel); get_block(ramdisk); get_block(second); get_block(extra); get_block(recovery_dtbo); get_block(dtb); get_block(signature); get_block(vendor_ramdisk_table); get_block(bootconfig); payload = byte_view(base_addr, off); auto tail_addr = base_addr + off; tail = byte_view(tail_addr, map.buf() + map.sz() - tail_addr); if (auto size = hdr->kernel_size()) { if (int dtb_off = find_dtb_offset(kernel, size); dtb_off > 0) { kernel_dtb = byte_view(kernel + dtb_off, size - dtb_off); hdr->kernel_size() = dtb_off; fprintf(stderr, "%-*s [%zu]\n", PADDING, "KERNEL_DTB_SZ", kernel_dtb.sz()); } k_fmt = check_fmt_lg(kernel, hdr->kernel_size()); if (k_fmt == MTK) { fprintf(stderr, "MTK_KERNEL_HDR\n"); flags[MTK_KERNEL] = true; k_hdr = reinterpret_cast(kernel); fprintf(stderr, "%-*s [%u]\n", PADDING, "SIZE", k_hdr->size); fprintf(stderr, "%-*s [%s]\n", PADDING, "NAME", k_hdr->name); kernel += sizeof(mtk_hdr); hdr->kernel_size() -= sizeof(mtk_hdr); k_fmt = check_fmt_lg(kernel, hdr->kernel_size()); } if (k_fmt == ZIMAGE) { z_hdr = reinterpret_cast(kernel); if (const void *gzip = memmem(kernel, hdr->kernel_size(), GZIP1_MAGIC "\x08\x00", 4)) { fprintf(stderr, "ZIMAGE_KERNEL\n"); z_info.hdr_sz = (const uint8_t *) gzip - kernel; // Find end of piggy uint32_t zImage_size = z_hdr->end - z_hdr->start; uint32_t piggy_end = zImage_size; uint32_t offsets[16]; memcpy(offsets, kernel + zImage_size - sizeof(offsets), sizeof(offsets)); for (int i = 15; i >= 0; --i) { if (offsets[i] > (zImage_size - 0xFF) && offsets[i] < zImage_size) { piggy_end = offsets[i]; break; } } if (piggy_end == zImage_size) { fprintf(stderr, "! Could not find end of zImage piggy, keeping raw kernel\n"); } else { flags[ZIMAGE_KERNEL] = true; z_info.tail = byte_view(kernel + piggy_end, hdr->kernel_size() - piggy_end); kernel += z_info.hdr_sz; hdr->kernel_size() = piggy_end - z_info.hdr_sz; k_fmt = check_fmt_lg(kernel, hdr->kernel_size()); } } else { fprintf(stderr, "! Could not find zImage gzip piggy, keeping raw kernel\n"); } } fprintf(stderr, "%-*s [%s]\n", PADDING, "KERNEL_FMT", fmt2name[k_fmt]); } if (auto size = hdr->ramdisk_size()) { if (vendor_ramdisk_table != nullptr) { // v4 vendor boot contains multiple ramdisks using table_entry = const vendor_ramdisk_table_entry_v4; if (hdr->vendor_ramdisk_table_entry_size() != sizeof(table_entry)) { fprintf(stderr, "! Invalid vendor image: vendor_ramdisk_table_entry_size != %zu\n", sizeof(table_entry)); exit(1); } span table( reinterpret_cast(vendor_ramdisk_table), hdr->vendor_ramdisk_table_entry_num()); for (auto &it : table) { format_t fmt = check_fmt_lg(ramdisk + it.ramdisk_offset, it.ramdisk_size); fprintf(stderr, "%-*s name=[%s] type=[%s] size=[%u] fmt=[%s]\n", PADDING, "VND_RAMDISK", it.ramdisk_name, vendor_ramdisk_type(it.ramdisk_type), it.ramdisk_size, fmt2name[fmt]); } } else { r_fmt = check_fmt_lg(ramdisk, size); if (r_fmt == MTK) { fprintf(stderr, "MTK_RAMDISK_HDR\n"); flags[MTK_RAMDISK] = true; r_hdr = reinterpret_cast(ramdisk); fprintf(stderr, "%-*s [%u]\n", PADDING, "SIZE", r_hdr->size); fprintf(stderr, "%-*s [%s]\n", PADDING, "NAME", r_hdr->name); ramdisk += sizeof(mtk_hdr); hdr->ramdisk_size() -= sizeof(mtk_hdr); r_fmt = check_fmt_lg(ramdisk, hdr->ramdisk_size()); } fprintf(stderr, "%-*s [%s]\n", PADDING, "RAMDISK_FMT", fmt2name[r_fmt]); } } if (auto size = hdr->extra_size()) { e_fmt = check_fmt_lg(extra, size); fprintf(stderr, "%-*s [%s]\n", PADDING, "EXTRA_FMT", fmt2name[e_fmt]); } if (tail.sz()) { // Check special flags if (tail.sz() >= 16 && BUFFER_MATCH(tail.buf(), SEANDROID_MAGIC)) { fprintf(stderr, "SAMSUNG_SEANDROID\n"); flags[SEANDROID_FLAG] = true; } else if (tail.sz() >= 16 && BUFFER_MATCH(tail.buf(), LG_BUMP_MAGIC)) { fprintf(stderr, "LG_BUMP_IMAGE\n"); flags[LG_BUMP_FLAG] = true; } // Check if the image is signed if (verify()) { fprintf(stderr, "AVB1_SIGNED\n"); flags[AVB1_SIGNED_FLAG] = true; } // Find AVB footer const void *footer = tail.buf() + tail.sz() - sizeof(AvbFooter); if (BUFFER_MATCH(footer, AVB_FOOTER_MAGIC)) { avb_footer = reinterpret_cast(footer); // Double check if meta header exists const void *meta = base_addr + __builtin_bswap64(avb_footer->vbmeta_offset); if (BUFFER_MATCH(meta, AVB_MAGIC)) { fprintf(stderr, "VBMETA\n"); flags[AVB_FLAG] = true; vbmeta = reinterpret_cast(meta); } } } this->hdr = hdr; return true; } bool boot_img::verify(const char *cert) const { return rust::verify_boot_image(*this, cert); } int split_image_dtb(const char *filename, bool skip_decomp) { mmap_data img(filename); if (int off = find_dtb_offset(img.buf(), img.sz()); off > 0) { format_t fmt = check_fmt_lg(img.buf(), img.sz()); if (!skip_decomp && COMPRESSED(fmt)) { int fd = creat(KERNEL_FILE, 0644); decompress(fmt, fd, img.buf(), off); close(fd); } else { dump(img.buf(), off, KERNEL_FILE); } dump(img.buf() + off, img.sz() - off, KER_DTB_FILE); return 0; } else { fprintf(stderr, "Cannot find DTB in %s\n", filename); return 1; } } int unpack(const char *image, bool skip_decomp, bool hdr) { const boot_img boot(image); if (hdr) boot.hdr->dump_hdr_file(); // Dump kernel if (!skip_decomp && COMPRESSED(boot.k_fmt)) { if (boot.hdr->kernel_size() != 0) { int fd = creat(KERNEL_FILE, 0644); decompress(boot.k_fmt, fd, boot.kernel, boot.hdr->kernel_size()); close(fd); } } else { dump(boot.kernel, boot.hdr->kernel_size(), KERNEL_FILE); } // Dump kernel_dtb dump(boot.kernel_dtb.buf(), boot.kernel_dtb.sz(), KER_DTB_FILE); // Dump ramdisk if (boot.vendor_ramdisk_table != nullptr) { using table_entry = const vendor_ramdisk_table_entry_v4; span table( reinterpret_cast(boot.vendor_ramdisk_table), boot.hdr->vendor_ramdisk_table_entry_num()); xmkdir(VND_RAMDISK_DIR, 0755); owned_fd dirfd = xopen(VND_RAMDISK_DIR, O_RDONLY | O_CLOEXEC); for (auto &it : table) { char file_name[40]; if (it.ramdisk_name[0] == '\0') { strscpy(file_name, RAMDISK_FILE, sizeof(file_name)); } else { ssprintf(file_name, sizeof(file_name), "%s.cpio", it.ramdisk_name); } owned_fd fd = xopenat(dirfd, file_name, O_CREAT | O_TRUNC | O_WRONLY | O_CLOEXEC, 0644); format_t fmt = check_fmt_lg(boot.ramdisk + it.ramdisk_offset, it.ramdisk_size); if (!skip_decomp && COMPRESSED(fmt)) { decompress(fmt, fd, boot.ramdisk + it.ramdisk_offset, it.ramdisk_size); } else { xwrite(fd, boot.ramdisk + it.ramdisk_offset, it.ramdisk_size); } } } else if (!skip_decomp && COMPRESSED(boot.r_fmt)) { if (boot.hdr->ramdisk_size() != 0) { int fd = creat(RAMDISK_FILE, 0644); decompress(boot.r_fmt, fd, boot.ramdisk, boot.hdr->ramdisk_size()); close(fd); } } else { dump(boot.ramdisk, boot.hdr->ramdisk_size(), RAMDISK_FILE); } // Dump second dump(boot.second, boot.hdr->second_size(), SECOND_FILE); // Dump extra if (!skip_decomp && COMPRESSED(boot.e_fmt)) { if (boot.hdr->extra_size() != 0) { int fd = creat(EXTRA_FILE, 0644); decompress(boot.e_fmt, fd, boot.extra, boot.hdr->extra_size()); close(fd); } } else { dump(boot.extra, boot.hdr->extra_size(), EXTRA_FILE); } // Dump recovery_dtbo dump(boot.recovery_dtbo, boot.hdr->recovery_dtbo_size(), RECV_DTBO_FILE); // Dump dtb dump(boot.dtb, boot.hdr->dtb_size(), DTB_FILE); // Dump bootconfig dump(boot.bootconfig, boot.hdr->bootconfig_size(), BOOTCONFIG_FILE); return boot.flags[CHROMEOS_FLAG] ? 2 : 0; } #define file_align_with(page_size) \ write_zero(fd, align_padding(lseek(fd, 0, SEEK_CUR) - off.header, page_size)) #define file_align() file_align_with(boot.hdr->page_size()) void repack(const char *src_img, const char *out_img, bool skip_comp) { const boot_img boot(src_img); fprintf(stderr, "Repack to boot image: [%s]\n", out_img); struct { uint32_t header; uint32_t kernel; uint32_t ramdisk; uint32_t second; uint32_t extra; uint32_t dtb; uint32_t total; uint32_t vbmeta; } off{}; // Create a new boot header and reset sizes auto hdr = boot.hdr->clone(); hdr->kernel_size() = 0; hdr->ramdisk_size() = 0; hdr->second_size() = 0; hdr->dtb_size() = 0; hdr->bootconfig_size() = 0; if (access(HEADER_FILE, R_OK) == 0) hdr->load_hdr_file(); /*************** * Write blocks ***************/ // Create new image int fd = creat(out_img, 0644); if (boot.flags[DHTB_FLAG]) { // Skip DHTB header write_zero(fd, sizeof(dhtb_hdr)); } else if (boot.flags[BLOB_FLAG]) { xwrite(fd, boot.map.buf(), sizeof(blob_hdr)); } else if (boot.flags[NOOKHD_FLAG]) { xwrite(fd, boot.map.buf(), NOOKHD_PRE_HEADER_SZ); } else if (boot.flags[ACCLAIM_FLAG]) { xwrite(fd, boot.map.buf(), ACCLAIM_PRE_HEADER_SZ); } // Copy raw header off.header = lseek(fd, 0, SEEK_CUR); xwrite(fd, boot.payload.buf(), hdr->hdr_space()); // kernel off.kernel = lseek(fd, 0, SEEK_CUR); if (boot.flags[MTK_KERNEL]) { // Copy MTK headers xwrite(fd, boot.k_hdr, sizeof(mtk_hdr)); } if (boot.flags[ZIMAGE_KERNEL]) { // Copy zImage headers xwrite(fd, boot.z_hdr, boot.z_info.hdr_sz); } if (access(KERNEL_FILE, R_OK) == 0) { mmap_data m(KERNEL_FILE); if (!skip_comp && !COMPRESSED_ANY(check_fmt(m.buf(), m.sz())) && COMPRESSED(boot.k_fmt)) { // Always use zopfli for zImage compression auto fmt = (boot.flags[ZIMAGE_KERNEL] && boot.k_fmt == GZIP) ? ZOPFLI : boot.k_fmt; hdr->kernel_size() = compress(fmt, fd, m.buf(), m.sz()); } else { hdr->kernel_size() = xwrite(fd, m.buf(), m.sz()); } if (boot.flags[ZIMAGE_KERNEL]) { if (hdr->kernel_size() > boot.hdr->kernel_size()) { fprintf(stderr, "! Recompressed kernel is too large, using original kernel\n"); ftruncate64(fd, lseek64(fd, - (off64_t) hdr->kernel_size(), SEEK_CUR)); xwrite(fd, boot.kernel, boot.hdr->kernel_size()); } else if (!skip_comp) { // Pad zeros to make sure the zImage file size does not change // Also ensure the last 4 bytes are the uncompressed vmlinux size uint32_t sz = m.sz(); write_zero(fd, boot.hdr->kernel_size() - hdr->kernel_size() - sizeof(sz)); xwrite(fd, &sz, sizeof(sz)); } // zImage size shall remain the same hdr->kernel_size() = boot.hdr->kernel_size(); } } else if (boot.hdr->kernel_size() != 0) { xwrite(fd, boot.kernel, boot.hdr->kernel_size()); hdr->kernel_size() = boot.hdr->kernel_size(); } if (boot.flags[ZIMAGE_KERNEL]) { // Copy zImage tail and adjust size accordingly hdr->kernel_size() += boot.z_info.hdr_sz; hdr->kernel_size() += xwrite(fd, boot.z_info.tail.buf(), boot.z_info.tail.sz()); } // kernel dtb if (access(KER_DTB_FILE, R_OK) == 0) hdr->kernel_size() += restore(fd, KER_DTB_FILE); file_align(); // ramdisk off.ramdisk = lseek(fd, 0, SEEK_CUR); if (boot.flags[MTK_RAMDISK]) { // Copy MTK headers xwrite(fd, boot.r_hdr, sizeof(mtk_hdr)); } using table_entry = vendor_ramdisk_table_entry_v4; vector ramdisk_table; if (boot.vendor_ramdisk_table) { // Create a copy so we can modify it auto entry_start = reinterpret_cast(boot.vendor_ramdisk_table); ramdisk_table.insert( ramdisk_table.begin(), entry_start, entry_start + boot.hdr->vendor_ramdisk_table_entry_num()); owned_fd dirfd = xopen(VND_RAMDISK_DIR, O_RDONLY | O_CLOEXEC); uint32_t ramdisk_offset = 0; for (auto &it : ramdisk_table) { char file_name[64]; if (it.ramdisk_name[0] == '\0') { strscpy(file_name, RAMDISK_FILE, sizeof(file_name)); } else { ssprintf(file_name, sizeof(file_name), "%s.cpio", it.ramdisk_name); } mmap_data m(dirfd, file_name); format_t fmt = check_fmt_lg(boot.ramdisk + it.ramdisk_offset, it.ramdisk_size); it.ramdisk_offset = ramdisk_offset; if (!skip_comp && !COMPRESSED_ANY(check_fmt(m.buf(), m.sz())) && COMPRESSED(fmt)) { it.ramdisk_size = compress(fmt, fd, m.buf(), m.sz()); } else { it.ramdisk_size = xwrite(fd, m.buf(), m.sz()); } ramdisk_offset += it.ramdisk_size; } hdr->ramdisk_size() = ramdisk_offset; file_align(); } else if (access(RAMDISK_FILE, R_OK) == 0) { mmap_data m(RAMDISK_FILE); auto r_fmt = boot.r_fmt; if (!skip_comp && !hdr->is_vendor() && hdr->header_version() == 4 && r_fmt != LZ4_LEGACY) { // A v4 boot image ramdisk will have to be merged with other vendor ramdisks, // and they have to use the exact same compression method. v4 GKIs are required to // use lz4 (legacy), so hardcode the format here. fprintf(stderr, "RAMDISK_FMT: [%s] -> [%s]\n", fmt2name[r_fmt], fmt2name[LZ4_LEGACY]); r_fmt = LZ4_LEGACY; } if (!skip_comp && !COMPRESSED_ANY(check_fmt(m.buf(), m.sz())) && COMPRESSED(r_fmt)) { hdr->ramdisk_size() = compress(r_fmt, fd, m.buf(), m.sz()); } else { hdr->ramdisk_size() = xwrite(fd, m.buf(), m.sz()); } file_align(); } // second off.second = lseek(fd, 0, SEEK_CUR); if (access(SECOND_FILE, R_OK) == 0) { hdr->second_size() = restore(fd, SECOND_FILE); file_align(); } // extra off.extra = lseek(fd, 0, SEEK_CUR); if (access(EXTRA_FILE, R_OK) == 0) { mmap_data m(EXTRA_FILE); if (!skip_comp && !COMPRESSED_ANY(check_fmt(m.buf(), m.sz())) && COMPRESSED(boot.e_fmt)) { hdr->extra_size() = compress(boot.e_fmt, fd, m.buf(), m.sz()); } else { hdr->extra_size() = xwrite(fd, m.buf(), m.sz()); } file_align(); } // recovery_dtbo if (access(RECV_DTBO_FILE, R_OK) == 0) { hdr->recovery_dtbo_offset() = lseek(fd, 0, SEEK_CUR); hdr->recovery_dtbo_size() = restore(fd, RECV_DTBO_FILE); file_align(); } // dtb off.dtb = lseek(fd, 0, SEEK_CUR); if (access(DTB_FILE, R_OK) == 0) { hdr->dtb_size() = restore(fd, DTB_FILE); file_align(); } // Copy boot signature if (boot.hdr->signature_size()) { xwrite(fd, boot.signature, boot.hdr->signature_size()); file_align(); } // vendor ramdisk table if (!ramdisk_table.empty()) { xwrite(fd, ramdisk_table.data(), sizeof(table_entry) * ramdisk_table.size()); file_align(); } // bootconfig if (access(BOOTCONFIG_FILE, R_OK) == 0) { hdr->bootconfig_size() = restore(fd, BOOTCONFIG_FILE); file_align(); } // Proprietary stuffs if (boot.flags[SEANDROID_FLAG]) { xwrite(fd, SEANDROID_MAGIC, 16); if (boot.flags[DHTB_FLAG]) { xwrite(fd, "\xFF\xFF\xFF\xFF", 4); } } else if (boot.flags[LG_BUMP_FLAG]) { xwrite(fd, LG_BUMP_MAGIC, 16); } off.total = lseek(fd, 0, SEEK_CUR); file_align(); // vbmeta if (boot.flags[AVB_FLAG]) { // According to avbtool.py, if the input is not an Android sparse image // (which boot images are not), the default block size is 4096 file_align_with(4096); off.vbmeta = lseek(fd, 0, SEEK_CUR); uint64_t vbmeta_size = __builtin_bswap64(boot.avb_footer->vbmeta_size); xwrite(fd, boot.vbmeta, vbmeta_size); } // Pad image to original size if not chromeos (as it requires post processing) if (!boot.flags[CHROMEOS_FLAG]) { off_t current = lseek(fd, 0, SEEK_CUR); if (current < boot.map.sz()) { write_zero(fd, boot.map.sz() - current); } } /****************** * Patch the image ******************/ // Map output image as rw mmap_data out(out_img, true); // MTK headers if (boot.flags[MTK_KERNEL]) { auto m_hdr = reinterpret_cast(out.buf() + off.kernel); m_hdr->size = hdr->kernel_size(); hdr->kernel_size() += sizeof(mtk_hdr); } if (boot.flags[MTK_RAMDISK]) { auto m_hdr = reinterpret_cast(out.buf() + off.ramdisk); m_hdr->size = hdr->ramdisk_size(); hdr->ramdisk_size() += sizeof(mtk_hdr); } // Make sure header size matches hdr->header_size() = hdr->hdr_size(); // Update checksum if (char *id = hdr->id()) { auto ctx = get_sha(!boot.flags[SHA256_FLAG]); uint32_t size = hdr->kernel_size(); ctx->update(byte_view(out.buf() + off.kernel, size)); ctx->update(byte_view(&size, sizeof(size))); size = hdr->ramdisk_size(); ctx->update(byte_view(out.buf() + off.ramdisk, size)); ctx->update(byte_view(&size, sizeof(size))); size = hdr->second_size(); ctx->update(byte_view(out.buf() + off.second, size)); ctx->update(byte_view(&size, sizeof(size))); size = hdr->extra_size(); if (size) { ctx->update(byte_view(out.buf() + off.extra, size)); ctx->update(byte_view(&size, sizeof(size))); } uint32_t ver = hdr->header_version(); if (ver == 1 || ver == 2) { size = hdr->recovery_dtbo_size(); ctx->update(byte_view(out.buf() + hdr->recovery_dtbo_offset(), size)); ctx->update(byte_view(&size, sizeof(size))); } if (ver == 2) { size = hdr->dtb_size(); ctx->update(byte_view(out.buf() + off.dtb, size)); ctx->update(byte_view(&size, sizeof(size))); } memset(id, 0, BOOT_ID_SIZE); ctx->finalize_into(byte_data(id, ctx->output_size())); } // Print new header info hdr->print(); // Copy main header if (boot.flags[AMONET_FLAG]) { auto real_hdr_sz = std::min(hdr->hdr_space() - AMONET_MICROLOADER_SZ, hdr->hdr_size()); memcpy(out.buf() + off.header + AMONET_MICROLOADER_SZ, hdr->raw_hdr(), real_hdr_sz); } else { memcpy(out.buf() + off.header, hdr->raw_hdr(), hdr->hdr_size()); } if (boot.flags[AVB_FLAG]) { // Copy and patch AVB structures auto footer = reinterpret_cast(out.buf() + out.sz() - sizeof(AvbFooter)); memcpy(footer, boot.avb_footer, sizeof(AvbFooter)); footer->original_image_size = __builtin_bswap64(off.total); footer->vbmeta_offset = __builtin_bswap64(off.vbmeta); if (check_env("PATCHVBMETAFLAG")) { auto vbmeta = reinterpret_cast(out.buf() + off.vbmeta); vbmeta->flags = __builtin_bswap32(3); } } if (boot.flags[DHTB_FLAG]) { // DHTB header auto d_hdr = reinterpret_cast(out.buf()); memcpy(d_hdr, DHTB_MAGIC, 8); d_hdr->size = off.total - sizeof(dhtb_hdr); sha256_hash(byte_view(out.buf() + sizeof(dhtb_hdr), d_hdr->size), byte_data(d_hdr->checksum, 32)); } else if (boot.flags[BLOB_FLAG]) { // Blob header auto b_hdr = reinterpret_cast(out.buf()); b_hdr->size = off.total - sizeof(blob_hdr); } // Sign the image after we finish patching the boot image if (boot.flags[AVB1_SIGNED_FLAG]) { byte_view payload(out.buf() + off.header, off.total - off.header); auto sig = rust::sign_boot_image(payload, "/boot", nullptr, nullptr); if (!sig.empty()) { lseek(fd, off.total, SEEK_SET); xwrite(fd, sig.data(), sig.size()); } } close(fd); } int verify(const char *image, const char *cert) { const boot_img boot(image); if (cert == nullptr) { // Boot image parsing already checks if the image is signed return boot.flags[AVB1_SIGNED_FLAG] ? 0 : 1; } else { // Provide a custom certificate and re-verify return boot.verify(cert) ? 0 : 1; } } int sign(const char *image, const char *name, const char *cert, const char *key) { const boot_img boot(image); auto sig = rust::sign_boot_image(boot.payload, name, cert, key); if (sig.empty()) return 1; auto eof = boot.tail.buf() - boot.map.buf(); int fd = xopen(image, O_WRONLY | O_CLOEXEC); if (lseek(fd, eof, SEEK_SET) != eof || xwrite(fd, sig.data(), sig.size()) != sig.size()) { close(fd); return 1; } if (auto off = lseek(fd, 0, SEEK_CUR); off < boot.map.sz()) { // Wipe out rest of tail write_zero(fd, boot.map.sz() - off); } close(fd); return 0; }