#include #include #include #include #include #include #include #include #include #include #include #include #include "bootimg.h" #include "magiskboot.h" #include "compress.h" using namespace std; uint32_t dyn_img_hdr::j32 = 0; uint64_t dyn_img_hdr::j64 = 0; static int64_t one_step(unique_ptr &&ptr, int fd, const void *in, size_t size) { ptr->set_out(make_unique(fd)); if (!ptr->write(in, size)) return -1; return ptr->finalize(); } static int64_t decompress(format_t type, int fd, const void *in, size_t size) { return one_step(unique_ptr(get_decoder(type)), fd, in, size); } static int64_t compress(format_t type, int fd, const void *in, size_t size) { return one_step(unique_ptr(get_encoder(type)), fd, in, size); } static void dump(void *buf, size_t size, const char *filename) { if (size == 0) return; int fd = creat(filename, 0644); xwrite(fd, buf, size); close(fd); } static size_t restore(const char *filename, int fd) { int ifd = xopen(filename, O_RDONLY); size_t size = lseek(ifd, 0, SEEK_END); lseek(ifd, 0, SEEK_SET); xsendfile(fd, ifd, nullptr, size); close(ifd); return size; } static void restore_buf(int fd, const void *buf, size_t size) { xwrite(fd, buf, size); } boot_img::~boot_img() { munmap(map_addr, map_size); delete k_hdr; delete r_hdr; delete b_hdr; } #define UNSUPP_RET 1 #define CHROME_RET 2 int boot_img::parse_file(const char *image) { mmap_ro(image, map_addr, map_size); fprintf(stderr, "Parsing boot image: [%s]\n", image); for (uint8_t *head = map_addr; head < map_addr + map_size; ++head) { switch (check_fmt(head, map_size)) { case CHROMEOS: // The caller should know it's chromeos, as it needs additional signing flags |= CHROMEOS_FLAG; break; case DHTB: flags |= DHTB_FLAG; flags |= SEANDROID_FLAG; fprintf(stderr, "DHTB_HDR\n"); break; case BLOB: flags |= BLOB_FLAG; fprintf(stderr, "TEGRA_BLOB\n"); b_hdr = new blob_hdr(); memcpy(b_hdr, head, sizeof(blob_hdr)); head += sizeof(blob_hdr) - 1; break; case AOSP: return parse_image(head); default: break; } } exit(UNSUPP_RET); } #define pos_align() pos = do_align(pos, hdr.page_size()) int boot_img::parse_image(uint8_t *head) { auto hp = (boot_img_hdr*) head; if (hp->page_size >= 0x02000000) { fprintf(stderr, "PXA_BOOT_HDR\n"); hdr.set_hdr(new boot_img_hdr_pxa()); memcpy(*hdr, head, sizeof(boot_img_hdr_pxa)); } else { if (memcmp(hp->cmdline, NOOKHD_RL_MAGIC, 10) == 0 || memcmp(hp->cmdline, NOOKHD_GL_MAGIC, 12) == 0 || memcmp(hp->cmdline, NOOKHD_GR_MAGIC, 14) == 0 || memcmp(hp->cmdline, NOOKHD_EB_MAGIC, 26) == 0 || memcmp(hp->cmdline, NOOKHD_ER_MAGIC, 30) == 0) { flags |= NOOKHD_FLAG; fprintf(stderr, "NOOKHD_LOADER\n"); head += NOOKHD_PRE_HEADER_SZ; } else if (memcmp(hp->name, ACCLAIM_MAGIC, 10) == 0) { flags |= ACCLAIM_FLAG; fprintf(stderr, "ACCLAIM_LOADER\n"); head += ACCLAIM_PRE_HEADER_SZ; } hdr.set_hdr(new boot_img_hdr()); memcpy(*hdr, head, sizeof(boot_img_hdr)); } size_t pos = hdr.page_size(); flags |= hdr.id()[SHA_DIGEST_SIZE] ? SHA256_FLAG : 0; print_hdr(); kernel = head + pos; pos += hdr->kernel_size; pos_align(); ramdisk = head + pos; pos += hdr->ramdisk_size; pos_align(); second = head + pos; pos += hdr->second_size; pos_align(); extra = head + pos; pos += hdr.extra_size(); pos_align(); recov_dtbo = head + pos; pos += hdr.recovery_dtbo_size(); pos_align(); dtb = head + pos; pos += hdr.dtb_size(); pos_align(); if (head + pos < map_addr + map_size) { tail = head + pos; tail_size = map_size - (tail - map_addr); } // Check tail info, currently only for LG Bump and Samsung SEANDROIDENFORCE if (tail_size >= 16 && memcmp(tail, SEANDROID_MAGIC, 16) == 0) { flags |= SEANDROID_FLAG; } else if (tail_size >= 16 && memcmp(tail, LG_BUMP_MAGIC, 16) == 0) { flags |= LG_BUMP_FLAG; } find_dtb(); k_fmt = check_fmt(kernel, hdr->kernel_size); r_fmt = check_fmt(ramdisk, hdr->ramdisk_size); // Check MTK if (k_fmt == MTK) { fprintf(stderr, "MTK_KERNEL_HDR\n"); flags |= MTK_KERNEL; k_hdr = new mtk_hdr(); memcpy(k_hdr, kernel, sizeof(mtk_hdr)); fprintf(stderr, "KERNEL [%u]\n", k_hdr->size); fprintf(stderr, "NAME [%s]\n", k_hdr->name); kernel += 512; hdr->kernel_size -= 512; k_fmt = check_fmt(kernel, hdr->kernel_size); } if (r_fmt == MTK) { fprintf(stderr, "MTK_RAMDISK_HDR\n"); flags |= MTK_RAMDISK; r_hdr = new mtk_hdr(); memcpy(r_hdr, ramdisk, sizeof(mtk_hdr)); fprintf(stderr, "RAMDISK [%u]\n", r_hdr->size); fprintf(stderr, "NAME [%s]\n", r_hdr->name); ramdisk += 512; hdr->ramdisk_size -= 512; r_fmt = check_fmt(ramdisk, hdr->ramdisk_size); } fprintf(stderr, "KERNEL_FMT [%s]\n", fmt2name[k_fmt]); fprintf(stderr, "RAMDISK_FMT [%s]\n", fmt2name[r_fmt]); return (flags & CHROMEOS_FLAG) ? CHROME_RET : 0; } void boot_img::find_dtb() { for (uint32_t i = 0; i < hdr->kernel_size; ++i) { auto fdt_hdr = reinterpret_cast(kernel + i); if (fdt32_to_cpu(fdt_hdr->magic) != FDT_MAGIC) continue; // Check that fdt_header.totalsize does not overflow kernel image size uint32_t totalsize = fdt32_to_cpu(fdt_hdr->totalsize); if (totalsize > hdr->kernel_size - i) { fprintf(stderr, "Invalid DTB detection at 0x%x: size (%u) > remaining (%u)\n", i, totalsize, hdr->kernel_size - i); continue; } // Check that fdt_header.off_dt_struct does not overflow kernel image size uint32_t off_dt_struct = fdt32_to_cpu(fdt_hdr->off_dt_struct); if (off_dt_struct > hdr->kernel_size - i) { fprintf(stderr, "Invalid DTB detection at 0x%x: " "struct offset (%u) > remaining (%u)\n", i, off_dt_struct, hdr->kernel_size - i); continue; } // Check that fdt_node_header.tag of first node is FDT_BEGIN_NODE auto fdt_node_hdr = reinterpret_cast(kernel + i + off_dt_struct); if (fdt32_to_cpu(fdt_node_hdr->tag) != FDT_BEGIN_NODE) { fprintf(stderr, "Invalid DTB detection at 0x%x: " "header tag of first node != FDT_BEGIN_NODE\n", i); continue; } kernel_dtb = kernel + i; kernel_dt_size = hdr->kernel_size - i; hdr->kernel_size = i; fprintf(stderr, "KERNEL_DTB [%u]\n", kernel_dt_size); break; } } void boot_img::print_hdr() { fprintf(stderr, "HEADER_VER [%u]\n", hdr.header_version()); fprintf(stderr, "KERNEL_SZ [%u]\n", hdr->kernel_size); fprintf(stderr, "RAMDISK_SZ [%u]\n", hdr->ramdisk_size); fprintf(stderr, "SECOND_SZ [%u]\n", hdr->second_size); fprintf(stderr, "EXTRA_SZ [%u]\n", hdr.extra_size()); fprintf(stderr, "RECOV_DTBO_SZ [%u]\n", hdr.recovery_dtbo_size()); fprintf(stderr, "DTB [%u]\n", hdr.dtb_size()); uint32_t ver = hdr.os_version(); if (ver) { int a,b,c,y,m = 0; int version, patch_level; version = ver >> 11; patch_level = ver & 0x7ff; a = (version >> 14) & 0x7f; b = (version >> 7) & 0x7f; c = version & 0x7f; fprintf(stderr, "OS_VERSION [%d.%d.%d]\n", a, b, c); y = (patch_level >> 4) + 2000; m = patch_level & 0xf; fprintf(stderr, "OS_PATCH_LEVEL [%d-%02d]\n", y, m); } fprintf(stderr, "PAGESIZE [%u]\n", hdr.page_size()); fprintf(stderr, "NAME [%s]\n", hdr.name()); fprintf(stderr, "CMDLINE [%.512s%.1024s]\n", hdr.cmdline(), hdr.extra_cmdline()); fprintf(stderr, "CHECKSUM ["); for (int i = 0; hdr.id()[i]; ++i) fprintf(stderr, "%02x", hdr.id()[i]); fprintf(stderr, "]\n"); } int unpack(const char *image, bool hdr) { boot_img boot {}; int ret = boot.parse_file(image); int fd; if (hdr) { FILE *fp = xfopen(HEADER_FILE, "w"); fprintf(fp, "pagesize=%u\n", boot.hdr.page_size()); fprintf(fp, "name=%s\n", boot.hdr.name()); fprintf(fp, "cmdline=%.512s%.1024s\n", boot.hdr.cmdline(), boot.hdr.extra_cmdline()); uint32_t ver = boot.hdr.os_version(); if (ver) { int a, b, c, y, m = 0; int version, patch_level; version = ver >> 11; patch_level = ver & 0x7ff; a = (version >> 14) & 0x7f; b = (version >> 7) & 0x7f; c = version & 0x7f; fprintf(fp, "os_version=%d.%d.%d\n", a, b, c); y = (patch_level >> 4) + 2000; m = patch_level & 0xf; fprintf(fp, "os_patch_level=%d-%02d\n", y, m); } fclose(fp); } // Dump kernel if (COMPRESSED(boot.k_fmt)) { fd = creat(KERNEL_FILE, 0644); decompress(boot.k_fmt, fd, boot.kernel, boot.hdr->kernel_size); close(fd); } else { fprintf(stderr, "Kernel is uncompressed or not a supported compressed type!\n"); dump(boot.kernel, boot.hdr->kernel_size, KERNEL_FILE); } // Dump dtb dump(boot.kernel_dtb, boot.kernel_dt_size, KER_DTB_FILE); // Dump ramdisk if (COMPRESSED(boot.r_fmt)) { fd = creat(RAMDISK_FILE, 0644); decompress(boot.r_fmt, fd, boot.ramdisk, boot.hdr->ramdisk_size); close(fd); } else { fprintf(stderr, "Ramdisk is uncompressed or not a supported compressed type!\n"); dump(boot.ramdisk, boot.hdr->ramdisk_size, RAMDISK_FILE); } // Dump second dump(boot.second, boot.hdr->second_size, SECOND_FILE); // Dump extra dump(boot.extra, boot.hdr.extra_size(), EXTRA_FILE); // Dump recovery_dtbo dump(boot.recov_dtbo, boot.hdr.recovery_dtbo_size(), RECV_DTBO_FILE); // Dump dtb dump(boot.dtb, boot.hdr.dtb_size(), DTB_FILE); return ret; } #define file_align() write_zero(fd, align_off(lseek(fd, 0, SEEK_CUR) - header_off, boot.hdr.page_size())) void repack(const char* orig_image, const char* out_image) { boot_img boot {}; off_t header_off, kernel_off, ramdisk_off, second_off, extra_off, dtb_off; // Parse original image boot.parse_file(orig_image); // Reset sizes boot.hdr->kernel_size = 0; boot.hdr->ramdisk_size = 0; boot.hdr->second_size = 0; boot.hdr.dtb_size() = 0; boot.kernel_dt_size = 0; fprintf(stderr, "Repack to boot image: [%s]\n", out_image); // Create new image int fd = creat(out_image, 0644); if (boot.flags & DHTB_FLAG) { // Skip DHTB header write_zero(fd, 512); } else if (boot.flags & BLOB_FLAG) { // Skip blob header write_zero(fd, sizeof(blob_hdr)); } else if (boot.flags & NOOKHD_FLAG) { restore_buf(fd, boot.map_addr, NOOKHD_PRE_HEADER_SZ); } else if (boot.flags & ACCLAIM_FLAG) { restore_buf(fd, boot.map_addr, ACCLAIM_PRE_HEADER_SZ); } // header if (access(HEADER_FILE, R_OK) == 0) { parse_prop_file(HEADER_FILE, [&](string_view key, string_view value) -> bool { if (key == "page_size") { boot.hdr.page_size() = parse_int(value); } else if (key == "name") { memset(boot.hdr.name(), 0, 16); memcpy(boot.hdr.name(), value.data(), value.length() > 15 ? 15 : value.length()); } else if (key == "cmdline") { memset(boot.hdr.cmdline(), 0, 512); memset(boot.hdr.extra_cmdline(), 0, 1024); if (value.length() > 512) { memcpy(boot.hdr.cmdline(), value.data(), 512); memcpy(boot.hdr.extra_cmdline(), &value[512], value.length() - 511); } else { memcpy(boot.hdr.cmdline(), value.data(), value.length()); } } else if (key == "os_version") { int patch_level = boot.hdr.os_version() & 0x7ff; int a, b, c; sscanf(value.data(), "%d.%d.%d", &a, &b, &c); boot.hdr.os_version() = (((a << 14) | (b << 7) | c) << 11) | patch_level; } else if (key == "os_patch_level") { int os_version = boot.hdr.os_version() >> 11; int y, m; sscanf(value.data(), "%d-%d", &y, &m); y -= 2000; boot.hdr.os_version() = (os_version << 11) | (y << 4) | m; } return true; }); } // Skip a page for header header_off = lseek(fd, 0, SEEK_CUR); write_zero(fd, boot.hdr.page_size()); // kernel kernel_off = lseek(fd, 0, SEEK_CUR); if (boot.flags & MTK_KERNEL) { // Skip MTK header write_zero(fd, 512); } if (access(KERNEL_FILE, R_OK) == 0) { size_t raw_size; void *raw_buf; mmap_ro(KERNEL_FILE, raw_buf, raw_size); if (!COMPRESSED(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.k_fmt)) { boot.hdr->kernel_size = compress(boot.k_fmt, fd, raw_buf, raw_size); } else { boot.hdr->kernel_size = write(fd, raw_buf, raw_size); } munmap(raw_buf, raw_size); } // kernel dtb if (access(KER_DTB_FILE, R_OK) == 0) boot.hdr->kernel_size += restore(KER_DTB_FILE, fd); file_align(); // ramdisk ramdisk_off = lseek(fd, 0, SEEK_CUR); if (boot.flags & MTK_RAMDISK) { // Skip MTK header write_zero(fd, 512); } if (access(RAMDISK_FILE, R_OK) == 0) { size_t raw_size; void *raw_buf; mmap_ro(RAMDISK_FILE, raw_buf, raw_size); if (!COMPRESSED(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.r_fmt)) { boot.hdr->ramdisk_size = compress(boot.r_fmt, fd, raw_buf, raw_size); } else { boot.hdr->ramdisk_size = write(fd, raw_buf, raw_size); } munmap(raw_buf, raw_size); file_align(); } // second second_off = lseek(fd, 0, SEEK_CUR); if (access(SECOND_FILE, R_OK) == 0) { boot.hdr->second_size = restore(SECOND_FILE, fd); file_align(); } // extra extra_off = lseek(fd, 0, SEEK_CUR); if (access(EXTRA_FILE, R_OK) == 0) { boot.hdr.extra_size() = restore(EXTRA_FILE, fd); file_align(); } // recovery_dtbo if (access(RECV_DTBO_FILE, R_OK) == 0) { boot.hdr.recovery_dtbo_offset() = lseek(fd, 0, SEEK_CUR); boot.hdr.recovery_dtbo_size() = restore(RECV_DTBO_FILE, fd); file_align(); } // dtb dtb_off = lseek(fd, 0, SEEK_CUR); if (access(DTB_FILE, R_OK) == 0) { boot.hdr.dtb_size() = restore(DTB_FILE, fd); file_align(); } // Append tail info if (boot.flags & SEANDROID_FLAG) { restore_buf(fd, SEANDROID_MAGIC "\xFF\xFF\xFF\xFF", 20); } if (boot.flags & LG_BUMP_FLAG) { restore_buf(fd, LG_BUMP_MAGIC, 16); } close(fd); // Map output image as rw munmap(boot.map_addr, boot.map_size); mmap_rw(out_image, boot.map_addr, boot.map_size); // MTK headers if (boot.flags & MTK_KERNEL) { boot.k_hdr->size = boot.hdr->kernel_size; boot.hdr->kernel_size += 512; memcpy(boot.map_addr + kernel_off, boot.k_hdr, sizeof(mtk_hdr)); } if (boot.flags & MTK_RAMDISK) { boot.r_hdr->size = boot.hdr->ramdisk_size; boot.hdr->ramdisk_size += 512; memcpy(boot.map_addr + ramdisk_off, boot.r_hdr, sizeof(mtk_hdr)); } // Update checksum HASH_CTX ctx; (boot.flags & SHA256_FLAG) ? SHA256_init(&ctx) : SHA_init(&ctx); uint32_t size = boot.hdr->kernel_size; HASH_update(&ctx, boot.map_addr + kernel_off, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr->ramdisk_size; HASH_update(&ctx, boot.map_addr + ramdisk_off, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr->second_size; HASH_update(&ctx, boot.map_addr + second_off, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr.extra_size(); if (size) { HASH_update(&ctx, boot.map_addr + extra_off, size); HASH_update(&ctx, &size, sizeof(size)); } if (boot.hdr.header_version()) { size = boot.hdr.recovery_dtbo_size(); HASH_update(&ctx, boot.map_addr + boot.hdr.recovery_dtbo_offset(), size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr.dtb_size(); if (size) { HASH_update(&ctx, boot.map_addr + dtb_off, size); HASH_update(&ctx, &size, sizeof(size)); } } memset(boot.hdr.id(), 0, 32); memcpy(boot.hdr.id(), HASH_final(&ctx), (boot.flags & SHA256_FLAG) ? SHA256_DIGEST_SIZE : SHA_DIGEST_SIZE); // Print new image info boot.print_hdr(); // Try to fix the header if (boot.hdr.header_version() && boot.hdr.header_size() == 0) boot.hdr.header_size() = sizeof(boot_img_hdr); // Main header memcpy(boot.map_addr + header_off, *boot.hdr, boot.hdr.hdr_size()); if (boot.flags & DHTB_FLAG) { // DHTB header dhtb_hdr *hdr = reinterpret_cast(boot.map_addr); memcpy(hdr, DHTB_MAGIC, 8); hdr->size = boot.map_size - 512; SHA256_hash(boot.map_addr + 512, hdr->size, hdr->checksum); } else if (boot.flags & BLOB_FLAG) { // Blob headers boot.b_hdr->size = boot.map_size - sizeof(blob_hdr); memcpy(boot.map_addr, boot.b_hdr, sizeof(blob_hdr)); } }