#include #include #include #include #include "bootimg.h" #include "magiskboot.h" #include "utils.h" #include "logging.h" #define INSUF_BLOCK_RET 2 #define CHROMEOS_RET 3 #define ELF32_RET 4 #define ELF64_RET 5 static void dump(void *buf, size_t size, const char *filename) { int fd = creat(filename, 0644); xwrite(fd, buf, size); close(fd); } static size_t restore(const char *filename, int fd) { int ifd = xopen(filename, O_RDONLY); size_t size = lseek(ifd, 0, SEEK_END); lseek(ifd, 0, SEEK_SET); xsendfile(fd, ifd, NULL, size); close(ifd); return size; } static void restore_buf(int fd, const void *buf, size_t size) { xwrite(fd, buf, size); } static void print_hdr(const boot_img_hdr *hdr) { fprintf(stderr, "KERNEL [%d] @ 0x%08x\n", hdr->kernel_size, hdr->kernel_addr); fprintf(stderr, "RAMDISK [%d] @ 0x%08x\n", hdr->ramdisk_size, hdr->ramdisk_addr); fprintf(stderr, "SECOND [%d] @ 0x%08x\n", hdr->second_size, hdr->second_addr); fprintf(stderr, "EXTRA [%d] @ 0x%08x\n", hdr->extra_size, hdr->tags_addr); fprintf(stderr, "PAGESIZE [%d]\n", hdr->page_size); if (hdr->os_version != 0) { int a,b,c,y,m = 0; int os_version, os_patch_level; os_version = hdr->os_version >> 11; os_patch_level = hdr->os_version & 0x7ff; a = (os_version >> 14) & 0x7f; b = (os_version >> 7) & 0x7f; c = os_version & 0x7f; fprintf(stderr, "OS_VERSION [%d.%d.%d]\n", a, b, c); y = (os_patch_level >> 4) + 2000; m = os_patch_level & 0xf; fprintf(stderr, "PATCH_LEVEL [%d-%02d]\n", y, m); } fprintf(stderr, "NAME [%s]\n", hdr->name); fprintf(stderr, "CMDLINE [%s]\n", hdr->cmdline); fprintf(stderr, "\n"); } int parse_img(const char *image, boot_img *boot) { memset(boot, 0, sizeof(*boot)); int is_blk = mmap_ro(image, &boot->map_addr, &boot->map_size); // Parse image fprintf(stderr, "Parsing boot image: [%s]\n\n", image); for (size_t pos = 0; pos < boot->map_size; pos += 256) { switch (check_type(boot->map_addr + pos)) { case CHROMEOS: // The caller should know it's chromeos, as it needs additional signing boot->flags |= CHROMEOS_FLAG; continue; case ELF32: exit(ELF32_RET); case ELF64: exit(ELF64_RET); case AOSP: // Read the header memcpy(&boot->hdr, boot->map_addr + pos, sizeof(boot->hdr)); pos += boot->hdr.page_size; print_hdr(&boot->hdr); boot->kernel = boot->map_addr + pos; pos += boot->hdr.kernel_size; mem_align(&pos, boot->hdr.page_size); boot->ramdisk = boot->map_addr + pos; pos += boot->hdr.ramdisk_size; mem_align(&pos, boot->hdr.page_size); if (boot->hdr.second_size) { boot->second = boot->map_addr + pos; pos += boot->hdr.second_size; mem_align(&pos, boot->hdr.page_size); } if (boot->hdr.extra_size) { boot->extra = boot->map_addr + pos; pos += boot->hdr.extra_size; mem_align(&pos, boot->hdr.page_size); } if (pos < boot->map_size) { boot->tail = boot->map_addr + pos; boot->tail_size = boot->map_size - pos; } // Search for dtb in kernel for (uint32_t i = 0; i < boot->hdr.kernel_size; ++i) { if (memcmp(boot->kernel + i, DTB_MAGIC, 4) == 0) { boot->dtb = boot->kernel + i; boot->dt_size = boot->hdr.kernel_size - i; boot->hdr.kernel_size = i; fprintf(stderr, "DTB [%u]\n", boot->dt_size); } } boot->ramdisk_type = check_type(boot->ramdisk); boot->kernel_type = check_type(boot->kernel); // Check MTK if (boot->kernel_type == MTK) { fprintf(stderr, "MTK_KERNEL_HDR [512]\n"); boot->flags |= MTK_KERNEL; memcpy(&boot->mtk_kernel_hdr, boot->kernel, sizeof(mtk_hdr)); boot->kernel += 512; boot->hdr.kernel_size -= 512; boot->kernel_type = check_type(boot->kernel); } if (boot->ramdisk_type == MTK) { fprintf(stderr, "MTK_RAMDISK_HDR [512]\n"); boot->flags |= MTK_RAMDISK; memcpy(&boot->mtk_ramdisk_hdr, boot->ramdisk, sizeof(mtk_hdr)); boot->ramdisk += 512; boot->hdr.ramdisk_size -= 512; boot->ramdisk_type = check_type(boot->ramdisk); } char fmt[16]; get_type_name(boot->kernel_type, fmt); fprintf(stderr, "KERNEL_FMT [%s]\n", fmt); get_type_name(boot->ramdisk_type, fmt); fprintf(stderr, "RAMDISK_FMT [%s]\n", fmt); fprintf(stderr, "\n"); return boot->flags & CHROMEOS_FLAG ? CHROMEOS_RET : ((is_blk && boot->tail_size < 500 * 1024) ? INSUF_BLOCK_RET : 0); default: continue; } } LOGE("No boot image magic found!\n"); } void unpack(const char* image) { boot_img boot; int ret = parse_img(image, &boot); int fd; // Dump kernel if (COMPRESSED(boot.kernel_type)) { fd = creat(KERNEL_FILE, 0644); decomp(boot.kernel_type, fd, boot.kernel, boot.hdr.kernel_size); close(fd); } else { dump(boot.kernel, boot.hdr.kernel_size, KERNEL_FILE); } if (boot.dt_size) { // Dump dtb dump(boot.dtb, boot.dt_size, DTB_FILE); } // Dump ramdisk if (COMPRESSED(boot.ramdisk_type)) { fd = creat(RAMDISK_FILE, 0644); decomp(boot.ramdisk_type, fd, boot.ramdisk, boot.hdr.ramdisk_size); close(fd); } else { dump(boot.ramdisk, boot.hdr.ramdisk_size, RAMDISK_FILE ".raw"); LOGE("Unknown ramdisk format! Dumped to %s\n", RAMDISK_FILE ".raw"); } if (boot.hdr.second_size) { // Dump second dump(boot.second, boot.hdr.second_size, SECOND_FILE); } if (boot.hdr.extra_size) { // Dump extra dump(boot.extra, boot.hdr.extra_size, EXTRA_FILE); } munmap(boot.map_addr, boot.map_size); exit(ret); } void repack(const char* orig_image, const char* out_image) { boot_img boot; // There are possible two MTK headers size_t mtk_kernel_off, mtk_ramdisk_off; // Parse original image parse_img(orig_image, &boot); fprintf(stderr, "Repack to boot image: [%s]\n\n", out_image); // Create new image int fd = creat(out_image, 0644); // Skip a page for header write_zero(fd, boot.hdr.page_size); if (boot.flags & MTK_KERNEL) { // Record position and skip MTK header mtk_kernel_off = lseek(fd, 0, SEEK_CUR); write_zero(fd, 512); } if (COMPRESSED(boot.kernel_type)) { size_t raw_size; void *kernel_raw; mmap_ro(KERNEL_FILE, &kernel_raw, &raw_size); boot.hdr.kernel_size = comp(boot.kernel_type, fd, kernel_raw, raw_size); munmap(kernel_raw, raw_size); } else { boot.hdr.kernel_size = restore(KERNEL_FILE, fd); } // Restore dtb if (boot.dt_size && access(DTB_FILE, R_OK) == 0) { boot.hdr.kernel_size += restore(DTB_FILE, fd); } file_align(fd, boot.hdr.page_size, 1); if (boot.flags & MTK_RAMDISK) { // Record position and skip MTK header mtk_ramdisk_off = lseek(fd, 0, SEEK_CUR); write_zero(fd, 512); } if (access(RAMDISK_FILE, R_OK) == 0) { // If we found raw cpio, compress to original format size_t cpio_size; void *cpio; mmap_ro(RAMDISK_FILE, &cpio, &cpio_size); boot.hdr.ramdisk_size = comp(boot.ramdisk_type, fd, cpio, cpio_size); munmap(cpio, cpio_size); } else { // Find compressed ramdisk char name[PATH_MAX]; int found = 0; for (int i = 0; SUP_EXT_LIST[i]; ++i) { sprintf(name, "%s.%s", RAMDISK_FILE, SUP_EXT_LIST[i]); if (access(name, R_OK) == 0) { found = 1; break; } } if (!found) LOGE("No ramdisk exists!\n"); boot.hdr.ramdisk_size = restore(name, fd); } file_align(fd, boot.hdr.page_size, 1); // Restore second if (boot.hdr.second_size && access(SECOND_FILE, R_OK) == 0) { boot.hdr.second_size = restore(SECOND_FILE, fd); file_align(fd, boot.hdr.page_size, 1); } // Restore extra if (boot.hdr.extra_size && access(EXTRA_FILE, R_OK) == 0) { boot.hdr.extra_size = restore(EXTRA_FILE, fd); file_align(fd, boot.hdr.page_size, 1); } // Check tail info, currently only for LG Bump and Samsung SEANDROIDENFORCE if (boot.tail_size >= 16) { if (memcmp(boot.tail, "SEANDROIDENFORCE", 16) == 0 || memcmp(boot.tail, LG_BUMP_MAGIC, 16) == 0 ) { restore_buf(fd, boot.tail, 16); } } // Write MTK headers back if (boot.flags & MTK_KERNEL) { lseek(fd, mtk_kernel_off, SEEK_SET); boot.mtk_kernel_hdr.size = boot.hdr.kernel_size; boot.hdr.kernel_size += 512; restore_buf(fd, &boot.mtk_kernel_hdr, sizeof(mtk_hdr)); } if (boot.flags & MTK_RAMDISK) { lseek(fd, mtk_ramdisk_off, SEEK_SET); boot.mtk_ramdisk_hdr.size = boot.hdr.ramdisk_size; boot.hdr.ramdisk_size += 512; restore_buf(fd, &boot.mtk_ramdisk_hdr, sizeof(mtk_hdr)); } // Main header lseek(fd, 0, SEEK_SET); restore_buf(fd, &boot.hdr, sizeof(boot.hdr)); // Print new image info print_hdr(&boot.hdr); munmap(boot.map_addr, boot.map_size); close(fd); }