#include #include #include #include #include #include #include #include "magiskboot.h" #include "compress.h" int64_t decompress(format_t type, int fd, const void *from, size_t size) { auto cmp = get_decoder(type); int64_t ret = cmp->one_step(fd, from, size); delete cmp; return ret; } int64_t compress(format_t type, int fd, const void *from, size_t size) { auto cmp = get_encoder(type); int64_t ret = cmp->one_step(fd, from, size); delete cmp; return ret; } void decompress(char *from, const char *to) { int strip = 1; void *file; size_t size = 0; if (strcmp(from, "-") == 0) stream_full_read(STDIN_FILENO, &file, &size); else mmap_ro(from, &file, &size); format_t type = check_fmt(file, size); char *ext; ext = strrchr(from, '.'); if (to == nullptr) to = from; if (ext != nullptr) { // Strip out a matched file extension switch (type) { case GZIP: if (strcmp(ext, ".gz") != 0) strip = 0; break; case XZ: if (strcmp(ext, ".xz") != 0) strip = 0; break; case LZMA: if (strcmp(ext, ".lzma") != 0) strip = 0; break; case BZIP2: if (strcmp(ext, ".bz2") != 0) strip = 0; break; case LZ4_LEGACY: case LZ4: if (strcmp(ext, ".lz4") != 0) strip = 0; break; default: LOGE("Provided file \'%s\' is not a supported archive format\n", from); } if (strip) *ext = '\0'; } int fd; if (strcmp(to, "-") == 0) { fd = STDOUT_FILENO; } else { fd = creat(to, 0644); fprintf(stderr, "Decompressing to [%s]\n", to); } decompress(type, fd, file, size); close(fd); if (to == from && ext != nullptr) { *ext = '.'; unlink(from); } if (strcmp(from, "-") == 0) free(file); else munmap(file, size); } void compress(const char *method, const char *from, const char *to) { format_t type; const char *ext; char dest[PATH_MAX]; if (strcmp(method, "gzip") == 0) { type = GZIP; ext = "gz"; } else if (strcmp(method, "xz") == 0) { type = XZ; ext = "xz"; } else if (strcmp(method, "lzma") == 0) { type = LZMA; ext = "lzma"; } else if (strcmp(method, "lz4") == 0) { type = LZ4; ext = "lz4"; } else if (strcmp(method, "lz4_legacy") == 0) { type = LZ4_LEGACY; ext = "lz4"; } else if (strcmp(method, "bzip2") == 0) { type = BZIP2; ext = "bz2"; } else { fprintf(stderr, "Only support following methods: "); for (int i = 0; SUP_LIST[i]; ++i) fprintf(stderr, "%s ", SUP_LIST[i]); fprintf(stderr, "\n"); exit(1); } void *file; size_t size; if (strcmp(from, "-") == 0) stream_full_read(STDIN_FILENO, &file, &size); else mmap_ro(from, &file, &size); if (to == nullptr) { if (strcmp(from, "-") == 0) strcpy(dest, "-"); else snprintf(dest, sizeof(dest), "%s.%s", from, ext); } else strcpy(dest, to); int fd; if (strcmp(dest, "-") == 0) { fd = STDOUT_FILENO; } else { fd = creat(dest, 0644); fprintf(stderr, "Compressing to [%s]\n", dest); } compress(type, fd, file, size); close(fd); if (strcmp(from, "-") == 0) free(file); else munmap(file, size); if (to == nullptr) unlink(from); } /* Compression Streams */ Compression *get_encoder(format_t type) { switch (type) { case XZ: return new XZEncoder(); case LZMA: return new LZMAEncoder(); case BZIP2: return new BZEncoder(); case LZ4: return new LZ4FEncoder(); case LZ4_LEGACY: return new LZ4Encoder(); case GZIP: default: return new GZEncoder(); } } Compression *get_decoder(format_t type) { switch (type) { case XZ: case LZMA: return new LZMADecoder(); case BZIP2: return new BZDecoder(); case LZ4: return new LZ4FDecoder(); case LZ4_LEGACY: return new LZ4Decoder(); case GZIP: default: return new GZDecoder(); } } Compression::Compression() : fn([](auto, auto) -> void {}) {} void Compression::set_outfn(std::function &&fn) { this->fn = std::move(fn); } void Compression::set_outfd(int fd) { fn = [=](const void *out, size_t len) -> void { xwrite(fd, out, len); }; } int64_t Compression::one_step(int outfd, const void *in, size_t size) { set_outfd(outfd); if (!update(in, size)) return -1; return finalize(); } GZStream::GZStream(int mode) : mode(mode), strm({}) { switch(mode) { case 0: inflateInit2(&strm, 15 | 16); break; case 1: deflateInit2(&strm, 9, Z_DEFLATED, 15 | 16, 8, Z_DEFAULT_STRATEGY); break; } } bool GZStream::update(const void *in, size_t size) { return update(in, size, Z_NO_FLUSH); } uint64_t GZStream::finalize() { update(nullptr, 0, Z_FINISH); uint64_t total = strm.total_out; switch(mode) { case 0: inflateEnd(&strm); break; case 1: deflateEnd(&strm); break; } return total; } bool GZStream::update(const void *in, size_t size, int flush) { int ret; strm.next_in = (Bytef *) in; strm.avail_in = size; do { strm.next_out = outbuf; strm.avail_out = sizeof(outbuf); switch(mode) { case 0: ret = inflate(&strm, flush); break; case 1: ret = deflate(&strm, flush); break; } if (ret == Z_STREAM_ERROR) { LOGW("Gzip %s failed (%d)\n", mode ? "encode" : "decode", ret); return false; } fn(outbuf, sizeof(outbuf) - strm.avail_out); } while (strm.avail_out == 0); return true; } BZStream::BZStream(int mode) : mode(mode), strm({}) { switch(mode) { case 0: BZ2_bzDecompressInit(&strm, 0, 0); break; case 1: BZ2_bzCompressInit(&strm, 9, 0, 0); break; } } bool BZStream::update(const void *in, size_t size) { return update(in, size, BZ_RUN); } uint64_t BZStream::finalize() { update(nullptr, 0, BZ_FINISH); uint64_t total = ((uint64_t) strm.total_out_hi32 << 32) + strm.total_out_lo32; switch(mode) { case 0: BZ2_bzDecompressEnd(&strm); break; case 1: BZ2_bzCompressEnd(&strm); break; } return total; } bool BZStream::update(const void *in, size_t size, int flush) { int ret; strm.next_in = (char *) in; strm.avail_in = size; do { strm.avail_out = sizeof(outbuf); strm.next_out = outbuf; switch(mode) { case 0: ret = BZ2_bzDecompress(&strm); break; case 1: ret = BZ2_bzCompress(&strm, flush); break; } if (ret < 0) { LOGW("Bzip2 %s failed (%d)\n", mode ? "encode" : "decode", ret); return false; } fn(outbuf, sizeof(outbuf) - strm.avail_out); } while (strm.avail_out == 0); return true; } LZMAStream::LZMAStream(int mode) : mode(mode), strm(LZMA_STREAM_INIT) { lzma_options_lzma opt; int ret; // Initialize preset lzma_lzma_preset(&opt, 9); lzma_filter filters[] = { { .id = LZMA_FILTER_LZMA2, .options = &opt }, { .id = LZMA_VLI_UNKNOWN, .options = nullptr }, }; switch(mode) { case 0: ret = lzma_auto_decoder(&strm, UINT64_MAX, 0); break; case 1: ret = lzma_stream_encoder(&strm, filters, LZMA_CHECK_CRC32); break; case 2: ret = lzma_alone_encoder(&strm, &opt); break; } } bool LZMAStream::update(const void *in, size_t size) { return update(in, size, LZMA_RUN); } uint64_t LZMAStream::finalize() { update(nullptr, 0, LZMA_FINISH); uint64_t total = strm.total_out; lzma_end(&strm); return total; } bool LZMAStream::update(const void *in, size_t size, lzma_action flush) { int ret; strm.next_in = (uint8_t *) in; strm.avail_in = size; do { strm.avail_out = sizeof(outbuf); strm.next_out = outbuf; ret = lzma_code(&strm, flush); if (ret != LZMA_OK && ret != LZMA_STREAM_END) { LOGW("LZMA %s failed (%d)\n", mode ? "encode" : "decode", ret); return false; } fn(outbuf, sizeof(outbuf) - strm.avail_out); } while (strm.avail_out == 0); return true; } LZ4FDecoder::LZ4FDecoder() : outbuf(nullptr), total(0) { LZ4F_createDecompressionContext(&ctx, LZ4F_VERSION); } LZ4FDecoder::~LZ4FDecoder() { LZ4F_freeDecompressionContext(ctx); delete[] outbuf; } bool LZ4FDecoder::update(const void *in, size_t size) { auto inbuf = (const uint8_t *) in; if (!outbuf) read_header(inbuf, size); size_t read, write; LZ4F_errorCode_t ret; do { read = size; write = outCapacity; ret = LZ4F_decompress(ctx, outbuf, &write, inbuf, &read, nullptr); if (LZ4F_isError(ret)) { LOGW("LZ4 decode error: %s\n", LZ4F_getErrorName(ret)); return false; } size -= read; inbuf += read; total += write; fn(outbuf, write); } while (size != 0 || write != 0); return true; } uint64_t LZ4FDecoder::finalize() { return total; } void LZ4FDecoder::read_header(const uint8_t *&in, size_t &size) { size_t read = size; LZ4F_frameInfo_t info; LZ4F_getFrameInfo(ctx, &info, in, &read); switch (info.blockSizeID) { case LZ4F_default: case LZ4F_max64KB: outCapacity = 1 << 16; break; case LZ4F_max256KB: outCapacity = 1 << 18; break; case LZ4F_max1MB: outCapacity = 1 << 20; break; case LZ4F_max4MB: outCapacity = 1 << 22; break; } outbuf = new uint8_t[outCapacity]; in += read; size -= read; } LZ4FEncoder::LZ4FEncoder() : outbuf(nullptr), outCapacity(0) { LZ4F_createCompressionContext(&ctx, LZ4F_VERSION); } LZ4FEncoder::~LZ4FEncoder() { LZ4F_freeCompressionContext(ctx); delete[] outbuf; } bool LZ4FEncoder::update(const void *in, size_t size) { if (!outbuf) write_header(); auto inbuf = (const uint8_t *) in; size_t read, write; do { read = size > CHUNK ? CHUNK : size; write = LZ4F_compressUpdate(ctx, outbuf, outCapacity, inbuf, read, nullptr); if (LZ4F_isError(write)) { LOGW("LZ4 encode error: %s\n", LZ4F_getErrorName(write)); return false; } size -= read; inbuf += read; total += write; fn(outbuf, write); } while (size != 0); return true; } uint64_t LZ4FEncoder::finalize() { size_t write = LZ4F_compressEnd(ctx, outbuf, outCapacity, nullptr); total += write; fn(outbuf, write); return total; } void LZ4FEncoder::write_header() { LZ4F_preferences_t prefs { .autoFlush = 1, .compressionLevel = 9, .frameInfo = { .blockMode = LZ4F_blockIndependent, .blockSizeID = LZ4F_max4MB, .blockChecksumFlag = LZ4F_noBlockChecksum, .contentChecksumFlag = LZ4F_contentChecksumEnabled } }; outCapacity = LZ4F_compressBound(CHUNK, &prefs); outbuf = new uint8_t[outCapacity]; size_t write = LZ4F_compressBegin(ctx, outbuf, outCapacity, &prefs); total += write; fn(outbuf, write); } LZ4Decoder::LZ4Decoder() : init(false), buf_off(0), total(0), block_sz(0) { outbuf = new char[LZ4_UNCOMPRESSED]; buf = new char[LZ4_COMPRESSED]; } LZ4Decoder::~LZ4Decoder() { delete[] outbuf; delete[] buf; } bool LZ4Decoder::update(const void *in, size_t size) { const char *inbuf = (const char *) in; if (!init) { // Skip magic inbuf += 4; size -= 4; init = true; } int write; size_t consumed; do { if (block_sz == 0) { block_sz = *((unsigned *) inbuf); inbuf += sizeof(unsigned); size -= sizeof(unsigned); } else if (buf_off + size >= block_sz) { consumed = block_sz - buf_off; memcpy(buf + buf_off, inbuf, consumed); inbuf += consumed; size -= consumed; write = LZ4_decompress_safe(buf, outbuf, block_sz, LZ4_UNCOMPRESSED); if (write < 0) { LOGW("LZ4HC decompression failure (%d)\n", write); return false; } fn(outbuf, write); total += write; // Reset buf_off = 0; block_sz = 0; } else { // Copy to internal buffer memcpy(buf + buf_off, inbuf, size); buf_off += size; size = 0; } } while (size != 0); return true; } uint64_t LZ4Decoder::finalize() { return total; } LZ4Encoder::LZ4Encoder() : init(false), buf_off(0), out_total(0), in_total(0) { outbuf = new char[LZ4_COMPRESSED]; buf = new char[LZ4_UNCOMPRESSED]; } LZ4Encoder::~LZ4Encoder() { delete[] outbuf; delete[] buf; } bool LZ4Encoder::update(const void *in, size_t size) { if (!init) { fn("\x02\x21\x4c\x18", 4); init = true; } in_total += size; const char *inbuf = (const char *) in; size_t consumed; int write; do { if (buf_off + size >= LZ4_UNCOMPRESSED) { consumed = LZ4_UNCOMPRESSED - buf_off; memcpy(buf + buf_off, inbuf, consumed); inbuf += consumed; size -= consumed; write = LZ4_compress_HC(buf, outbuf, LZ4_UNCOMPRESSED, LZ4_COMPRESSED, 9); if (write == 0) { LOGW("LZ4HC compression failure\n"); return false; } fn(&write, sizeof(write)); fn(outbuf, write); out_total += write + sizeof(write); // Reset buffer buf_off = 0; } else { // Copy to internal buffer memcpy(buf + buf_off, inbuf, size); buf_off += size; size = 0; } } while (size != 0); return true; } uint64_t LZ4Encoder::finalize() { if (buf_off) { int write = LZ4_compress_HC(buf, outbuf, buf_off, LZ4_COMPRESSED, 9); fn(&write, sizeof(write)); fn(outbuf, write); out_total += write + sizeof(write); } fn(&in_total, sizeof(in_total)); return out_total + sizeof(in_total); }