Magisk/native/src/boot/compress.cpp

735 lines
22 KiB
C++

#include <memory>
#include <functional>
#include <zlib.h>
#include <bzlib.h>
#include <lzma.h>
#include <lz4.h>
#include <lz4frame.h>
#include <lz4hc.h>
#include <zopfli/util.h>
#include <zopfli/deflate.h>
#include <base.hpp>
#include "magiskboot.hpp"
#include "compress.hpp"
using namespace std;
#define bwrite this->base->write
constexpr size_t CHUNK = 0x40000;
constexpr size_t LZ4_UNCOMPRESSED = 0x800000;
constexpr size_t LZ4_COMPRESSED = LZ4_COMPRESSBOUND(LZ4_UNCOMPRESSED);
class gz_strm : public filter_out_stream {
public:
bool write(const void *buf, size_t len) override {
return len == 0 || do_write(buf, len, Z_NO_FLUSH);
}
~gz_strm() override {
do_write(nullptr, 0, Z_FINISH);
switch(mode) {
case DECODE:
inflateEnd(&strm);
break;
case ENCODE:
deflateEnd(&strm);
break;
default:
break;
}
}
protected:
enum mode_t {
DECODE,
ENCODE,
WAIT,
COPY
} mode;
gz_strm(mode_t mode, out_strm_ptr &&base) :
filter_out_stream(std::move(base)), mode(mode), strm{}, outbuf{0} {
switch(mode) {
case DECODE:
inflateInit2(&strm, 15 | 16);
break;
case ENCODE:
deflateInit2(&strm, 9, Z_DEFLATED, 15 | 16, 8, Z_DEFAULT_STRATEGY);
break;
default:
break;
}
}
private:
z_stream strm;
uint8_t outbuf[CHUNK];
bool do_write(const void *buf, size_t len, int flush) {
if (mode == WAIT) {
if (len == 0) return true;
Bytef b[1] = {0x1f};
if (*(Bytef *)buf == 0x8b) {
mode = DECODE;
inflateReset(&strm);
strm.next_in = b;
strm.avail_in = 1;
inflate(&strm, flush);
} else {
mode = COPY;
return true;
}
}
strm.next_in = (Bytef *) buf;
strm.avail_in = len;
do {
int code;
strm.next_out = outbuf;
strm.avail_out = sizeof(outbuf);
switch(mode) {
case DECODE:
code = inflate(&strm, flush);
break;
case ENCODE:
code = deflate(&strm, flush);
break;
case COPY:
return true;
default:
// should have been handled
return false;
}
if (code == Z_STREAM_ERROR) {
LOGW("gzip %s failed (%d)\n", mode ? "encode" : "decode", code);
return false;
}
if (!bwrite(outbuf, sizeof(outbuf) - strm.avail_out))
return false;
if (mode == DECODE && code == Z_STREAM_END) {
if (strm.avail_in > 1) {
if (strm.next_in[0] == 0x1f && strm.next_in[1] == 0x8b) {
// There is still data in the stream, we need to reset the stream
// and continue decoding
inflateReset(&strm);
strm.avail_out = 0;
continue;
}
} else if (strm.avail_in == 1) {
if (strm.next_in[0] == 0x1f) {
// If there is only one byte left, we need to wait for the next byte
// to determine if it is a gzip header
mode = WAIT;
return true;
}
} else {
// The next inflate won't consume any data but fallback
// to the previous two conditions
return true;
}
// There is still data in the stream, we need to copy it
mode = COPY;
return true;
}
} while (strm.avail_out == 0);
return true;
}
};
class gz_decoder : public gz_strm {
public:
explicit gz_decoder(out_strm_ptr &&base) : gz_strm(DECODE, std::move(base)) {};
};
class gz_encoder : public gz_strm {
public:
explicit gz_encoder(out_strm_ptr &&base) : gz_strm(ENCODE, std::move(base)) {};
};
class zopfli_encoder : public chunk_out_stream {
public:
explicit zopfli_encoder(out_strm_ptr &&base) :
chunk_out_stream(std::move(base), ZOPFLI_MASTER_BLOCK_SIZE),
zo{}, out(nullptr), outsize(0), crc(crc32_z(0L, Z_NULL, 0)), in_total(0), bp(0) {
ZopfliInitOptions(&zo);
// This config is already better than gzip -9
zo.numiterations = 1;
zo.blocksplitting = 0;
ZOPFLI_APPEND_DATA(31, &out, &outsize); /* ID1 */
ZOPFLI_APPEND_DATA(139, &out, &outsize); /* ID2 */
ZOPFLI_APPEND_DATA(8, &out, &outsize); /* CM */
ZOPFLI_APPEND_DATA(0, &out, &outsize); /* FLG */
/* MTIME */
ZOPFLI_APPEND_DATA(0, &out, &outsize);
ZOPFLI_APPEND_DATA(0, &out, &outsize);
ZOPFLI_APPEND_DATA(0, &out, &outsize);
ZOPFLI_APPEND_DATA(0, &out, &outsize);
ZOPFLI_APPEND_DATA(2, &out, &outsize); /* XFL, 2 indicates best compression. */
ZOPFLI_APPEND_DATA(3, &out, &outsize); /* OS follows Unix conventions. */
}
~zopfli_encoder() override {
finalize();
/* CRC */
ZOPFLI_APPEND_DATA(crc % 256, &out, &outsize);
ZOPFLI_APPEND_DATA((crc >> 8) % 256, &out, &outsize);
ZOPFLI_APPEND_DATA((crc >> 16) % 256, &out, &outsize);
ZOPFLI_APPEND_DATA((crc >> 24) % 256, &out, &outsize);
/* ISIZE */
ZOPFLI_APPEND_DATA(in_total % 256, &out, &outsize);
ZOPFLI_APPEND_DATA((in_total >> 8) % 256, &out, &outsize);
ZOPFLI_APPEND_DATA((in_total >> 16) % 256, &out, &outsize);
ZOPFLI_APPEND_DATA((in_total >> 24) % 256, &out, &outsize);
bwrite(out, outsize);
free(out);
}
protected:
bool write_chunk(const void *buf, size_t len, bool final) override {
auto in = static_cast<const unsigned char *>(buf);
in_total += len;
crc = crc32_z(crc, in, len);
ZopfliDeflatePart(&zo, 2, final, in, 0, len, &bp, &out, &outsize);
// ZOPFLI_APPEND_DATA is extremely dumb, so we always preserve the
// last byte to make sure that realloc is used instead of malloc
if (!bwrite(out, outsize - 1))
return false;
out[0] = out[outsize - 1];
outsize = 1;
return true;
}
private:
ZopfliOptions zo;
unsigned char *out;
size_t outsize;
unsigned long crc;
uint32_t in_total;
unsigned char bp;
};
class bz_strm : public filter_out_stream {
public:
bool write(const void *buf, size_t len) override {
return len == 0 || do_write(buf, len, BZ_RUN);
}
~bz_strm() override {
switch(mode) {
case DECODE:
BZ2_bzDecompressEnd(&strm);
break;
case ENCODE:
do_write(nullptr, 0, BZ_FINISH);
BZ2_bzCompressEnd(&strm);
break;
}
}
protected:
enum mode_t {
DECODE,
ENCODE
} mode;
bz_strm(mode_t mode, out_strm_ptr &&base) :
filter_out_stream(std::move(base)), mode(mode), strm{}, outbuf{0} {
switch(mode) {
case DECODE:
BZ2_bzDecompressInit(&strm, 0, 0);
break;
case ENCODE:
BZ2_bzCompressInit(&strm, 9, 0, 0);
break;
}
}
private:
bz_stream strm;
char outbuf[CHUNK];
bool do_write(const void *buf, size_t len, int flush) {
strm.next_in = (char *) buf;
strm.avail_in = len;
do {
int code;
strm.avail_out = sizeof(outbuf);
strm.next_out = outbuf;
switch(mode) {
case DECODE:
code = BZ2_bzDecompress(&strm);
break;
case ENCODE:
code = BZ2_bzCompress(&strm, flush);
break;
}
if (code < 0) {
LOGW("bzip2 %s failed (%d)\n", mode ? "encode" : "decode", code);
return false;
}
if (!bwrite(outbuf, sizeof(outbuf) - strm.avail_out))
return false;
if (code == BZ_STREAM_END)
return true;
} while (strm.avail_out == 0);
return true;
}
};
class bz_decoder : public bz_strm {
public:
explicit bz_decoder(out_strm_ptr &&base) : bz_strm(DECODE, std::move(base)) {};
};
class bz_encoder : public bz_strm {
public:
explicit bz_encoder(out_strm_ptr &&base) : bz_strm(ENCODE, std::move(base)) {};
};
class lzma_strm : public filter_out_stream {
public:
bool write(const void *buf, size_t len) override {
return len == 0 || do_write(buf, len, LZMA_RUN);
}
~lzma_strm() override {
do_write(nullptr, 0, LZMA_FINISH);
lzma_end(&strm);
}
protected:
enum mode_t {
DECODE,
ENCODE_XZ,
ENCODE_LZMA
} mode;
lzma_strm(mode_t mode, out_strm_ptr &&base) :
filter_out_stream(std::move(base)), mode(mode), strm(LZMA_STREAM_INIT), outbuf{0} {
lzma_options_lzma opt;
// Initialize preset
lzma_lzma_preset(&opt, 9);
lzma_filter filters[] = {
{ .id = LZMA_FILTER_LZMA2, .options = &opt },
{ .id = LZMA_VLI_UNKNOWN, .options = nullptr },
};
lzma_ret code;
switch(mode) {
case DECODE:
code = lzma_auto_decoder(&strm, UINT64_MAX, 0);
break;
case ENCODE_XZ:
code = lzma_stream_encoder(&strm, filters, LZMA_CHECK_CRC32);
break;
case ENCODE_LZMA:
code = lzma_alone_encoder(&strm, &opt);
break;
}
if (code != LZMA_OK) {
LOGE("LZMA initialization failed (%d)\n", code);
}
}
private:
lzma_stream strm;
uint8_t outbuf[CHUNK];
bool do_write(const void *buf, size_t len, lzma_action flush) {
strm.next_in = (uint8_t *) buf;
strm.avail_in = len;
do {
strm.avail_out = sizeof(outbuf);
strm.next_out = outbuf;
int code = lzma_code(&strm, flush);
if (code != LZMA_OK && code != LZMA_STREAM_END) {
LOGW("LZMA %s failed (%d)\n", mode ? "encode" : "decode", code);
return false;
}
if (!bwrite(outbuf, sizeof(outbuf) - strm.avail_out))
return false;
} while (strm.avail_out == 0);
return true;
}
};
class lzma_decoder : public lzma_strm {
public:
explicit lzma_decoder(out_strm_ptr &&base) : lzma_strm(DECODE, std::move(base)) {}
};
class xz_encoder : public lzma_strm {
public:
explicit xz_encoder(out_strm_ptr &&base) : lzma_strm(ENCODE_XZ, std::move(base)) {}
};
class lzma_encoder : public lzma_strm {
public:
explicit lzma_encoder(out_strm_ptr &&base) : lzma_strm(ENCODE_LZMA, std::move(base)) {}
};
class LZ4F_decoder : public filter_out_stream {
public:
explicit LZ4F_decoder(out_strm_ptr &&base) :
filter_out_stream(std::move(base)), ctx(nullptr), outbuf(nullptr), outCapacity(0) {
LZ4F_createDecompressionContext(&ctx, LZ4F_VERSION);
}
~LZ4F_decoder() override {
LZ4F_freeDecompressionContext(ctx);
delete[] outbuf;
}
bool write(const void *buf, size_t len) override {
auto in = reinterpret_cast<const uint8_t *>(buf);
if (!outbuf) {
size_t read = len;
LZ4F_frameInfo_t info;
LZ4F_getFrameInfo(ctx, &info, in, &read);
switch (info.blockSizeID) {
case LZ4F_default:
case LZ4F_max64KB: outCapacity = 1 << 16; break;
case LZ4F_max256KB: outCapacity = 1 << 18; break;
case LZ4F_max1MB: outCapacity = 1 << 20; break;
case LZ4F_max4MB: outCapacity = 1 << 22; break;
}
outbuf = new uint8_t[outCapacity];
in += read;
len -= read;
}
size_t read, write;
LZ4F_errorCode_t code;
do {
read = len;
write = outCapacity;
code = LZ4F_decompress(ctx, outbuf, &write, in, &read, nullptr);
if (LZ4F_isError(code)) {
LOGW("LZ4F decode error: %s\n", LZ4F_getErrorName(code));
return false;
}
len -= read;
in += read;
if (!bwrite(outbuf, write))
return false;
} while (len != 0 || write != 0);
return true;
}
private:
LZ4F_decompressionContext_t ctx;
uint8_t *outbuf;
size_t outCapacity;
};
class LZ4F_encoder : public filter_out_stream {
public:
explicit LZ4F_encoder(out_strm_ptr &&base) :
filter_out_stream(std::move(base)), ctx(nullptr), out_buf(nullptr), outCapacity(0) {
LZ4F_createCompressionContext(&ctx, LZ4F_VERSION);
}
bool write(const void *buf, size_t len) override {
if (!out_buf) {
LZ4F_preferences_t prefs {
.frameInfo = {
.blockSizeID = LZ4F_max4MB,
.blockMode = LZ4F_blockIndependent,
.contentChecksumFlag = LZ4F_contentChecksumEnabled,
.blockChecksumFlag = LZ4F_noBlockChecksum,
},
.compressionLevel = 9,
.autoFlush = 1,
};
outCapacity = LZ4F_compressBound(BLOCK_SZ, &prefs);
out_buf = new uint8_t[outCapacity];
size_t write = LZ4F_compressBegin(ctx, out_buf, outCapacity, &prefs);
if (!bwrite(out_buf, write))
return false;
}
if (len == 0)
return true;
auto in = reinterpret_cast<const uint8_t *>(buf);
size_t read, write;
do {
read = len > BLOCK_SZ ? BLOCK_SZ : len;
write = LZ4F_compressUpdate(ctx, out_buf, outCapacity, in, read, nullptr);
if (LZ4F_isError(write)) {
LOGW("LZ4F encode error: %s\n", LZ4F_getErrorName(write));
return false;
}
len -= read;
in += read;
if (!bwrite(out_buf, write))
return false;
} while (len != 0);
return true;
}
~LZ4F_encoder() override {
size_t len = LZ4F_compressEnd(ctx, out_buf, outCapacity, nullptr);
if (LZ4F_isError(len)) {
LOGE("LZ4F end of frame error: %s\n", LZ4F_getErrorName(len));
} else if (!bwrite(out_buf, len)) {
LOGE("LZ4F end of frame error: I/O error\n");
}
LZ4F_freeCompressionContext(ctx);
delete[] out_buf;
}
private:
LZ4F_compressionContext_t ctx;
uint8_t *out_buf;
size_t outCapacity;
static constexpr size_t BLOCK_SZ = 1 << 22;
};
class LZ4_decoder : public chunk_out_stream {
public:
explicit LZ4_decoder(out_strm_ptr &&base) :
chunk_out_stream(std::move(base), LZ4_COMPRESSED, sizeof(block_sz)),
out_buf(new char[LZ4_UNCOMPRESSED]), block_sz(0) {}
~LZ4_decoder() override {
finalize();
delete[] out_buf;
}
protected:
bool write_chunk(const void *buf, size_t len, bool) override {
// This is an error
if (len != chunk_sz)
return false;
auto in = reinterpret_cast<const char *>(buf);
if (block_sz == 0) {
memcpy(&block_sz, in, sizeof(block_sz));
if (block_sz == 0x184C2102) {
// This is actually the lz4 magic, read the next 4 bytes
block_sz = 0;
chunk_sz = sizeof(block_sz);
return true;
}
// Read the next block chunk
chunk_sz = block_sz;
return true;
} else {
int r = LZ4_decompress_safe(in, out_buf, block_sz, LZ4_UNCOMPRESSED);
chunk_sz = sizeof(block_sz);
block_sz = 0;
if (r < 0) {
LOGW("LZ4HC decompression failure (%d)\n", r);
return false;
}
return bwrite(out_buf, r);
}
}
private:
char *out_buf;
uint32_t block_sz;
};
class LZ4_encoder : public chunk_out_stream {
public:
explicit LZ4_encoder(out_strm_ptr &&base, bool lg) :
chunk_out_stream(std::move(base), LZ4_UNCOMPRESSED),
out_buf(new char[LZ4_COMPRESSED]), lg(lg), in_total(0) {
bwrite("\x02\x21\x4c\x18", 4);
}
~LZ4_encoder() override {
finalize();
if (lg)
bwrite(&in_total, sizeof(in_total));
delete[] out_buf;
}
protected:
bool write_chunk(const void *buf, size_t len, bool) override {
auto in = static_cast<const char *>(buf);
uint32_t block_sz = LZ4_compress_HC(in, out_buf, len, LZ4_COMPRESSED, LZ4HC_CLEVEL_MAX);
if (block_sz == 0) {
LOGW("LZ4HC compression failure\n");
return false;
}
if (bwrite(&block_sz, sizeof(block_sz)) && bwrite(out_buf, block_sz)) {
in_total += len;
return true;
}
return false;
}
private:
char *out_buf;
bool lg;
uint32_t in_total;
};
out_strm_ptr get_encoder(format_t type, out_strm_ptr &&base) {
switch (type) {
case XZ:
return make_unique<xz_encoder>(std::move(base));
case LZMA:
return make_unique<lzma_encoder>(std::move(base));
case BZIP2:
return make_unique<bz_encoder>(std::move(base));
case LZ4:
return make_unique<LZ4F_encoder>(std::move(base));
case LZ4_LEGACY:
return make_unique<LZ4_encoder>(std::move(base), false);
case LZ4_LG:
return make_unique<LZ4_encoder>(std::move(base), true);
case ZOPFLI:
return make_unique<zopfli_encoder>(std::move(base));
case GZIP:
default:
return make_unique<gz_encoder>(std::move(base));
}
}
out_strm_ptr get_decoder(format_t type, out_strm_ptr &&base) {
switch (type) {
case XZ:
case LZMA:
return make_unique<lzma_decoder>(std::move(base));
case BZIP2:
return make_unique<bz_decoder>(std::move(base));
case LZ4:
return make_unique<LZ4F_decoder>(std::move(base));
case LZ4_LEGACY:
case LZ4_LG:
return make_unique<LZ4_decoder>(std::move(base));
case ZOPFLI:
case GZIP:
default:
return make_unique<gz_decoder>(std::move(base));
}
}
void decompress(char *infile, const char *outfile) {
bool in_std = infile == "-"sv;
bool rm_in = false;
FILE *in_fp = in_std ? stdin : xfopen(infile, "re");
out_strm_ptr strm;
char buf[4096];
size_t len;
while ((len = fread(buf, 1, sizeof(buf), in_fp))) {
if (!strm) {
format_t type = check_fmt(buf, len);
fprintf(stderr, "Detected format: [%s]\n", fmt2name[type]);
if (!COMPRESSED(type))
LOGE("Input file is not a supported compressed type!\n");
/* If user does not provide outfile, infile has to be either
* <path>.[ext], or '-'. Outfile will be either <path> or '-'.
* If the input does not have proper format, abort */
char *ext = nullptr;
if (outfile == nullptr) {
outfile = infile;
if (!in_std) {
ext = strrchr(infile, '.');
if (ext == nullptr || strcmp(ext, fmt2ext[type]) != 0)
LOGE("Input file is not a supported type!\n");
// Strip out extension and remove input
*ext = '\0';
rm_in = true;
fprintf(stderr, "Decompressing to [%s]\n", outfile);
}
}
FILE *out_fp = outfile == "-"sv ? stdout : xfopen(outfile, "we");
strm = get_decoder(type, make_unique<fp_channel>(out_fp));
if (ext) *ext = '.';
}
if (!strm->write(buf, len))
LOGE("Decompression error!\n");
}
strm.reset(nullptr);
fclose(in_fp);
if (rm_in)
unlink(infile);
}
void compress(const char *method, const char *infile, const char *outfile) {
format_t fmt = name2fmt[method];
if (fmt == UNKNOWN)
LOGE("Unknown compression method: [%s]\n", method);
bool in_std = infile == "-"sv;
bool rm_in = false;
FILE *in_fp = in_std ? stdin : xfopen(infile, "re");
FILE *out_fp;
if (outfile == nullptr) {
if (in_std) {
out_fp = stdout;
} else {
/* If user does not provide outfile and infile is not
* STDIN, output to <infile>.[ext] */
string tmp(infile);
tmp += fmt2ext[fmt];
out_fp = xfopen(tmp.data(), "we");
fprintf(stderr, "Compressing to [%s]\n", tmp.data());
rm_in = true;
}
} else {
out_fp = outfile == "-"sv ? stdout : xfopen(outfile, "we");
}
auto strm = get_encoder(fmt, make_unique<fp_channel>(out_fp));
char buf[4096];
size_t len;
while ((len = fread(buf, 1, sizeof(buf), in_fp))) {
if (!strm->write(buf, len))
LOGE("Compression error!\n");
}
strm.reset(nullptr);
fclose(in_fp);
if (rm_in)
unlink(infile);
}
bool decompress(rust::Slice<const uint8_t> buf, int fd) {
format_t type = check_fmt(buf.data(), buf.length());
if (!COMPRESSED(type)) {
LOGE("Input file is not a supported compression format!\n");
return false;
}
auto strm = get_decoder(type, make_unique<fd_channel>(fd));
if (!strm->write(buf.data(), buf.length())) {
return false;
}
return true;
}