Magisk/native/jni/magiskboot/compress.cpp
2019-02-23 04:51:13 -05:00

552 lines
13 KiB
C++

#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <memory>
#include <functional>
#include <logging.h>
#include <utils.h>
#include "magiskboot.h"
#include "compress.h"
using namespace std;
int64_t decompress(format_t type, int fd, const void *from, size_t size) {
return unique_ptr<Compression>(get_decoder(type))->one_step(fd, from, size);
}
int64_t compress(format_t type, int fd, const void *from, size_t size) {
return unique_ptr<Compression>(get_encoder(type))->one_step(fd, from, size);
}
static bool read_file(FILE *fp, const function<void (void *, size_t)> &fn) {
char buf[4096];
size_t len;
while ((len = fread(buf, 1, sizeof(buf), fp)))
fn(buf, len);
return true;
}
void decompress(char *infile, const char *outfile) {
bool in_std = strcmp(infile, "-") == 0;
bool rm_in = false;
FILE *in_file = in_std ? stdin : xfopen(infile, "re");
int out_fd = -1;
unique_ptr<Compression> cmp;
read_file(in_file, [&](void *buf, size_t len) -> void {
if (out_fd < 0) {
format_t type = check_fmt(buf, len);
if (!COMPRESSED(type))
LOGE("Input file is not a compressed type!\n");
cmp = std::move(unique_ptr<Compression>(get_decoder(type)));
fprintf(stderr, "Detected format: [%s]\n", fmt2name[type]);
/* If user does not provide outfile, infile has to be either
* <path>.[ext], or '-'. Outfile will be either <path> or '-'.
* If the input does not have proper format, abort */
char *ext = nullptr;
if (outfile == nullptr) {
outfile = infile;
if (!in_std) {
ext = strrchr(infile, '.');
if (ext == nullptr || strcmp(ext, fmt2ext[type]) != 0)
LOGE("Input file is not a supported type!\n");
// Strip out extension and remove input
*ext = '\0';
rm_in = true;
fprintf(stderr, "Decompressing to [%s]\n", outfile);
}
}
out_fd = strcmp(outfile, "-") == 0 ? STDOUT_FILENO : creat(outfile, 0644);
cmp->set_out(make_unique<FDOutStream>(out_fd));
if (ext) *ext = '.';
}
if (!cmp->write(buf, len))
LOGE("Decompression error!\n");
});
cmp->finalize();
fclose(in_file);
close(out_fd);
if (rm_in)
unlink(infile);
}
void compress(const char *method, const char *infile, const char *outfile) {
auto it = name2fmt.find(method);
if (it == name2fmt.end())
LOGE("Unsupported compression method: [%s]\n", method);
unique_ptr<Compression> cmp(get_encoder(it->second));
bool in_std = strcmp(infile, "-") == 0;
bool rm_in = false;
FILE *in_file = in_std ? stdin : xfopen(infile, "re");
int out_fd;
if (outfile == nullptr) {
if (in_std) {
out_fd = STDOUT_FILENO;
} else {
/* If user does not provide outfile and infile is not
* STDIN, output to <infile>.[ext] */
char *tmp = new char[strlen(infile) + 5];
sprintf(tmp, "%s%s", infile, fmt2ext[it->second]);
out_fd = creat(tmp, 0644);
fprintf(stderr, "Compressing to [%s]\n", tmp);
delete[] tmp;
rm_in = true;
}
} else {
out_fd = strcmp(outfile, "-") == 0 ? STDOUT_FILENO : creat(outfile, 0644);
}
cmp->set_out(make_unique<FDOutStream>(out_fd));
read_file(in_file, [&](void *buf, size_t len) -> void {
if (!cmp->write(buf, len))
LOGE("Compression error!\n");
});
cmp->finalize();
fclose(in_file);
close(out_fd);
if (rm_in)
unlink(infile);
}
/* Compression Streams */
Compression *get_encoder(format_t type) {
switch (type) {
case XZ:
return new XZEncoder();
case LZMA:
return new LZMAEncoder();
case BZIP2:
return new BZEncoder();
case LZ4:
return new LZ4FEncoder();
case LZ4_LEGACY:
return new LZ4Encoder();
case GZIP:
default:
return new GZEncoder();
}
}
Compression *get_decoder(format_t type) {
switch (type) {
case XZ:
case LZMA:
return new LZMADecoder();
case BZIP2:
return new BZDecoder();
case LZ4:
return new LZ4FDecoder();
case LZ4_LEGACY:
return new LZ4Decoder();
case GZIP:
default:
return new GZDecoder();
}
}
int64_t Compression::one_step(int outfd, const void *in, size_t size) {
set_out(make_unique<FDOutStream>(outfd));
if (!write(in, size))
return -1;
return finalize();
}
GZStream::GZStream(int mode) : mode(mode), strm({}) {
switch(mode) {
case 0:
inflateInit2(&strm, 15 | 16);
break;
case 1:
deflateInit2(&strm, 9, Z_DEFLATED, 15 | 16, 8, Z_DEFAULT_STRATEGY);
break;
}
}
bool GZStream::write(const void *in, size_t size) {
return write(in, size, Z_NO_FLUSH);
}
uint64_t GZStream::finalize() {
write(nullptr, 0, Z_FINISH);
uint64_t total = strm.total_out;
switch(mode) {
case 0:
inflateEnd(&strm);
break;
case 1:
deflateEnd(&strm);
break;
}
return total;
}
bool GZStream::write(const void *in, size_t size, int flush) {
int ret;
strm.next_in = (Bytef *) in;
strm.avail_in = size;
do {
strm.next_out = outbuf;
strm.avail_out = sizeof(outbuf);
switch(mode) {
case 0:
ret = inflate(&strm, flush);
break;
case 1:
ret = deflate(&strm, flush);
break;
}
if (ret == Z_STREAM_ERROR) {
LOGW("Gzip %s failed (%d)\n", mode ? "encode" : "decode", ret);
return false;
}
FilterOutStream::write(outbuf, sizeof(outbuf) - strm.avail_out);
} while (strm.avail_out == 0);
return true;
}
BZStream::BZStream(int mode) : mode(mode), strm({}) {
switch(mode) {
case 0:
BZ2_bzDecompressInit(&strm, 0, 0);
break;
case 1:
BZ2_bzCompressInit(&strm, 9, 0, 0);
break;
}
}
bool BZStream::write(const void *in, size_t size) {
return write(in, size, BZ_RUN);
}
uint64_t BZStream::finalize() {
if (mode)
write(nullptr, 0, BZ_FINISH);
uint64_t total = ((uint64_t) strm.total_out_hi32 << 32) + strm.total_out_lo32;
switch(mode) {
case 0:
BZ2_bzDecompressEnd(&strm);
break;
case 1:
BZ2_bzCompressEnd(&strm);
break;
}
return total;
}
bool BZStream::write(const void *in, size_t size, int flush) {
int ret;
strm.next_in = (char *) in;
strm.avail_in = size;
do {
strm.avail_out = sizeof(outbuf);
strm.next_out = outbuf;
switch(mode) {
case 0:
ret = BZ2_bzDecompress(&strm);
break;
case 1:
ret = BZ2_bzCompress(&strm, flush);
break;
}
if (ret < 0) {
LOGW("Bzip2 %s failed (%d)\n", mode ? "encode" : "decode", ret);
return false;
}
FilterOutStream::write(outbuf, sizeof(outbuf) - strm.avail_out);
} while (strm.avail_out == 0);
return true;
}
LZMAStream::LZMAStream(int mode) : mode(mode), strm(LZMA_STREAM_INIT) {
lzma_options_lzma opt;
int ret;
// Initialize preset
lzma_lzma_preset(&opt, 9);
lzma_filter filters[] = {
{ .id = LZMA_FILTER_LZMA2, .options = &opt },
{ .id = LZMA_VLI_UNKNOWN, .options = nullptr },
};
switch(mode) {
case 0:
ret = lzma_auto_decoder(&strm, UINT64_MAX, 0);
break;
case 1:
ret = lzma_stream_encoder(&strm, filters, LZMA_CHECK_CRC32);
break;
case 2:
ret = lzma_alone_encoder(&strm, &opt);
break;
}
}
bool LZMAStream::write(const void *in, size_t size) {
return write(in, size, LZMA_RUN);
}
uint64_t LZMAStream::finalize() {
write(nullptr, 0, LZMA_FINISH);
uint64_t total = strm.total_out;
lzma_end(&strm);
return total;
}
bool LZMAStream::write(const void *in, size_t size, lzma_action flush) {
int ret;
strm.next_in = (uint8_t *) in;
strm.avail_in = size;
do {
strm.avail_out = sizeof(outbuf);
strm.next_out = outbuf;
ret = lzma_code(&strm, flush);
if (ret != LZMA_OK && ret != LZMA_STREAM_END) {
LOGW("LZMA %s failed (%d)\n", mode ? "encode" : "decode", ret);
return false;
}
FilterOutStream::write(outbuf, sizeof(outbuf) - strm.avail_out);
} while (strm.avail_out == 0);
return true;
}
LZ4FDecoder::LZ4FDecoder() : outbuf(nullptr), total(0) {
LZ4F_createDecompressionContext(&ctx, LZ4F_VERSION);
}
LZ4FDecoder::~LZ4FDecoder() {
LZ4F_freeDecompressionContext(ctx);
delete[] outbuf;
}
bool LZ4FDecoder::write(const void *in, size_t size) {
auto inbuf = (const uint8_t *) in;
if (!outbuf)
read_header(inbuf, size);
size_t read, write;
LZ4F_errorCode_t ret;
do {
read = size;
write = outCapacity;
ret = LZ4F_decompress(ctx, outbuf, &write, inbuf, &read, nullptr);
if (LZ4F_isError(ret)) {
LOGW("LZ4 decode error: %s\n", LZ4F_getErrorName(ret));
return false;
}
size -= read;
inbuf += read;
total += write;
FilterOutStream::write(outbuf, write);
} while (size != 0 || write != 0);
return true;
}
uint64_t LZ4FDecoder::finalize() {
return total;
}
void LZ4FDecoder::read_header(const uint8_t *&in, size_t &size) {
size_t read = size;
LZ4F_frameInfo_t info;
LZ4F_getFrameInfo(ctx, &info, in, &read);
switch (info.blockSizeID) {
case LZ4F_default:
case LZ4F_max64KB: outCapacity = 1 << 16; break;
case LZ4F_max256KB: outCapacity = 1 << 18; break;
case LZ4F_max1MB: outCapacity = 1 << 20; break;
case LZ4F_max4MB: outCapacity = 1 << 22; break;
}
outbuf = new uint8_t[outCapacity];
in += read;
size -= read;
}
LZ4FEncoder::LZ4FEncoder() : outbuf(nullptr), outCapacity(0) {
LZ4F_createCompressionContext(&ctx, LZ4F_VERSION);
}
LZ4FEncoder::~LZ4FEncoder() {
LZ4F_freeCompressionContext(ctx);
delete[] outbuf;
}
bool LZ4FEncoder::write(const void *in, size_t size) {
if (!outbuf)
write_header();
auto inbuf = (const uint8_t *) in;
size_t read, write;
do {
read = size > BLOCK_SZ ? BLOCK_SZ : size;
write = LZ4F_compressUpdate(ctx, outbuf, outCapacity, inbuf, read, nullptr);
if (LZ4F_isError(write)) {
LOGW("LZ4 encode error: %s\n", LZ4F_getErrorName(write));
return false;
}
size -= read;
inbuf += read;
total += write;
FilterOutStream::write(outbuf, write);
} while (size != 0);
return true;
}
uint64_t LZ4FEncoder::finalize() {
size_t write = LZ4F_compressEnd(ctx, outbuf, outCapacity, nullptr);
total += write;
FilterOutStream::write(outbuf, write);
return total;
}
void LZ4FEncoder::write_header() {
LZ4F_preferences_t prefs {
.autoFlush = 1,
.compressionLevel = 9,
.frameInfo = {
.blockMode = LZ4F_blockIndependent,
.blockSizeID = LZ4F_max4MB,
.blockChecksumFlag = LZ4F_noBlockChecksum,
.contentChecksumFlag = LZ4F_contentChecksumEnabled
}
};
outCapacity = LZ4F_compressBound(BLOCK_SZ, &prefs);
outbuf = new uint8_t[outCapacity];
size_t write = LZ4F_compressBegin(ctx, outbuf, outCapacity, &prefs);
total += write;
FilterOutStream::write(outbuf, write);
}
LZ4Decoder::LZ4Decoder() : init(false), buf_off(0), total(0), block_sz(0) {
outbuf = new char[LZ4_UNCOMPRESSED];
buf = new char[LZ4_COMPRESSED];
}
LZ4Decoder::~LZ4Decoder() {
delete[] outbuf;
delete[] buf;
}
bool LZ4Decoder::write(const void *in, size_t size) {
const char *inbuf = (const char *) in;
if (!init) {
// Skip magic
inbuf += 4;
size -= 4;
init = true;
}
int write;
size_t consumed;
do {
if (block_sz == 0) {
block_sz = *((unsigned *) inbuf);
inbuf += sizeof(unsigned);
size -= sizeof(unsigned);
} else if (buf_off + size >= block_sz) {
consumed = block_sz - buf_off;
memcpy(buf + buf_off, inbuf, consumed);
inbuf += consumed;
size -= consumed;
write = LZ4_decompress_safe(buf, outbuf, block_sz, LZ4_UNCOMPRESSED);
if (write < 0) {
LOGW("LZ4HC decompression failure (%d)\n", write);
return false;
}
FilterOutStream::write(outbuf, write);
total += write;
// Reset
buf_off = 0;
block_sz = 0;
} else {
// Copy to internal buffer
memcpy(buf + buf_off, inbuf, size);
buf_off += size;
size = 0;
}
} while (size != 0);
return true;
}
uint64_t LZ4Decoder::finalize() {
return total;
}
LZ4Encoder::LZ4Encoder() : init(false), buf_off(0), out_total(0), in_total(0) {
outbuf = new char[LZ4_COMPRESSED];
buf = new char[LZ4_UNCOMPRESSED];
}
LZ4Encoder::~LZ4Encoder() {
delete[] outbuf;
delete[] buf;
}
bool LZ4Encoder::write(const void *in, size_t size) {
if (!init) {
FilterOutStream::write("\x02\x21\x4c\x18", 4);
init = true;
}
in_total += size;
const char *inbuf = (const char *) in;
size_t consumed;
int write;
do {
if (buf_off + size >= LZ4_UNCOMPRESSED) {
consumed = LZ4_UNCOMPRESSED - buf_off;
memcpy(buf + buf_off, inbuf, consumed);
inbuf += consumed;
size -= consumed;
write = LZ4_compress_HC(buf, outbuf, LZ4_UNCOMPRESSED, LZ4_COMPRESSED, 9);
if (write == 0) {
LOGW("LZ4HC compression failure\n");
return false;
}
FilterOutStream::write(&write, sizeof(write));
FilterOutStream::write(outbuf, write);
out_total += write + sizeof(write);
// Reset buffer
buf_off = 0;
} else {
// Copy to internal buffer
memcpy(buf + buf_off, inbuf, size);
buf_off += size;
size = 0;
}
} while (size != 0);
return true;
}
uint64_t LZ4Encoder::finalize() {
if (buf_off) {
int write = LZ4_compress_HC(buf, outbuf, buf_off, LZ4_COMPRESSED, 9);
FilterOutStream::write(&write, sizeof(write));
FilterOutStream::write(outbuf, write);
out_total += write + sizeof(write);
}
FilterOutStream::write(&in_total, sizeof(in_total));
return out_total + sizeof(in_total);
}