Magisk/native/src/base/misc.hpp
2022-09-15 01:17:05 -07:00

215 lines
6.7 KiB
C++

#pragma once
#include <pthread.h>
#include <string>
#include <functional>
#include <string_view>
#include <bitset>
#include <base-rs.hpp>
#define DISALLOW_COPY_AND_MOVE(clazz) \
clazz(const clazz &) = delete; \
clazz(clazz &&) = delete;
class mutex_guard {
DISALLOW_COPY_AND_MOVE(mutex_guard)
public:
explicit mutex_guard(pthread_mutex_t &m): mutex(&m) {
pthread_mutex_lock(mutex);
}
void unlock() {
pthread_mutex_unlock(mutex);
mutex = nullptr;
}
~mutex_guard() {
if (mutex) pthread_mutex_unlock(mutex);
}
private:
pthread_mutex_t *mutex;
};
template <class Func>
class run_finally {
DISALLOW_COPY_AND_MOVE(run_finally)
public:
explicit run_finally(Func &&fn) : fn(std::move(fn)) {}
~run_finally() { fn(); }
private:
Func fn;
};
template <typename T>
class reversed_container {
public:
reversed_container(T &base) : base(base) {}
decltype(std::declval<T>().rbegin()) begin() { return base.rbegin(); }
decltype(std::declval<T>().crbegin()) begin() const { return base.crbegin(); }
decltype(std::declval<T>().crbegin()) cbegin() const { return base.crbegin(); }
decltype(std::declval<T>().rend()) end() { return base.rend(); }
decltype(std::declval<T>().crend()) end() const { return base.crend(); }
decltype(std::declval<T>().crend()) cend() const { return base.crend(); }
private:
T &base;
};
template <typename T>
reversed_container<T> reversed(T &base) {
return reversed_container<T>(base);
}
template<class T>
static inline void default_new(T *&p) { p = new T(); }
template<class T>
static inline void default_new(std::unique_ptr<T> &p) { p.reset(new T()); }
template<typename T, typename Impl>
class stateless_allocator {
public:
using value_type = T;
T *allocate(size_t num) { return static_cast<T*>(Impl::allocate(sizeof(T) * num)); }
void deallocate(T *ptr, size_t num) { Impl::deallocate(ptr, sizeof(T) * num); }
stateless_allocator() = default;
stateless_allocator(const stateless_allocator&) = default;
stateless_allocator(stateless_allocator&&) = default;
template <typename U>
stateless_allocator(const stateless_allocator<U, Impl>&) {}
bool operator==(const stateless_allocator&) { return true; }
bool operator!=(const stateless_allocator&) { return false; }
};
class dynamic_bitset_impl {
public:
using slot_type = unsigned long;
constexpr static int slot_size = sizeof(slot_type) * 8;
using slot_bits = std::bitset<slot_size>;
size_t slots() const { return slot_list.size(); }
slot_type get_slot(size_t slot) const {
return slot_list.size() > slot ? slot_list[slot].to_ulong() : 0ul;
}
void emplace_back(slot_type l) {
slot_list.emplace_back(l);
}
protected:
slot_bits::reference get(size_t pos) {
size_t slot = pos / slot_size;
size_t index = pos % slot_size;
if (slot_list.size() <= slot) {
slot_list.resize(slot + 1);
}
return slot_list[slot][index];
}
bool get(size_t pos) const {
size_t slot = pos / slot_size;
size_t index = pos % slot_size;
return slot_list.size() > slot && slot_list[slot][index];
}
private:
std::vector<slot_bits> slot_list;
};
struct dynamic_bitset : public dynamic_bitset_impl {
slot_bits::reference operator[] (size_t pos) { return get(pos); }
bool operator[] (size_t pos) const { return get(pos); }
};
struct StringCmp {
using is_transparent = void;
bool operator()(std::string_view a, std::string_view b) const { return a < b; }
};
template<typename T>
rust::Slice<uint8_t> byte_slice(T *buf, size_t sz) {
return rust::Slice(reinterpret_cast<uint8_t *>(buf), sz);
}
int parse_int(std::string_view s);
using thread_entry = void *(*)(void *);
int new_daemon_thread(thread_entry entry, void *arg = nullptr);
static inline bool str_contains(std::string_view s, std::string_view ss) {
return s.find(ss) != std::string::npos;
}
static inline bool str_starts(std::string_view s, std::string_view ss) {
return s.size() >= ss.size() && s.compare(0, ss.size(), ss) == 0;
}
static inline bool str_ends(std::string_view s, std::string_view ss) {
return s.size() >= ss.size() && s.compare(s.size() - ss.size(), std::string::npos, ss) == 0;
}
static inline std::string ltrim(std::string &&s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](unsigned char ch) {
return !std::isspace(ch);
}));
return std::move(s);
}
static inline std::string rtrim(std::string &&s) {
s.erase(std::find_if(s.rbegin(), s.rend(), [](unsigned char ch) {
return !std::isspace(ch) && ch != '\0';
}).base(), s.end());
return std::move(s);
}
int fork_dont_care();
int fork_no_orphan();
void init_argv0(int argc, char **argv);
void set_nice_name(const char *name);
uint32_t binary_gcd(uint32_t u, uint32_t v);
int switch_mnt_ns(int pid);
int gen_rand_str(char *buf, int len, bool varlen = true);
std::string &replace_all(std::string &str, std::string_view from, std::string_view to);
std::vector<std::string> split(const std::string &s, const std::string &delims);
std::vector<std::string_view> split_ro(std::string_view, std::string_view delims);
// Similar to vsnprintf, but the return value is the written number of bytes
int vssprintf(char *dest, size_t size, const char *fmt, va_list ap);
// Similar to snprintf, but the return value is the written number of bytes
int ssprintf(char *dest, size_t size, const char *fmt, ...);
// This is not actually the strscpy from the Linux kernel.
// Silently truncates, and returns the number of bytes written.
extern "C" size_t strscpy(char *dest, const char *src, size_t size);
// Ban usage of unsafe cstring functions
#define vsnprintf __use_vssprintf_instead__
#define snprintf __use_ssprintf_instead__
#define strlcpy __use_strscpy_instead__
struct exec_t {
bool err = false;
int fd = -2;
void (*pre_exec)() = nullptr;
int (*fork)() = xfork;
const char **argv = nullptr;
};
int exec_command(exec_t &exec);
template <class ...Args>
int exec_command(exec_t &exec, Args &&...args) {
const char *argv[] = {args..., nullptr};
exec.argv = argv;
return exec_command(exec);
}
int exec_command_sync(exec_t &exec);
template <class ...Args>
int exec_command_sync(exec_t &exec, Args &&...args) {
const char *argv[] = {args..., nullptr};
exec.argv = argv;
return exec_command_sync(exec);
}
template <class ...Args>
int exec_command_sync(Args &&...args) {
exec_t exec;
return exec_command_sync(exec, args...);
}
template <class ...Args>
void exec_command_async(Args &&...args) {
const char *argv[] = {args..., nullptr};
exec_t exec {
.fork = fork_dont_care,
.argv = argv,
};
exec_command(exec);
}