Applied patch from #88, thanks a lot!

This commit is contained in:
J. A. Bezemer
2009-12-29 20:00:57 +00:00
committed by Erik Ekman
parent 1a26a91db3
commit b177901d38
19 changed files with 2813 additions and 1054 deletions

299
README
View File

@@ -11,12 +11,12 @@ firewalled, but DNS queries are allowed.
QUICKSTART:
Try it out within your own LAN! Follow these simple steps:
- On your server, run: ./iodined -f 10.0.0.1 test.asdf
- On your server, run: ./iodined -f 10.0.0.1 test.com
(If you already use the 10.0.0.0 network, use another internal net like
172.16.0.0)
- Enter a password
- On the client, run: ./iodine -f 192.168.0.1 test.asdf
(Replace 192.168.0.1 with the server's ip address)
- On the client, run: ./iodine -f -r 192.168.0.1 test.com
(Replace 192.168.0.1 with your server's ip address)
- Enter the same password
- Now the client has the tunnel ip 10.0.0.2 and the server has 10.0.0.1
- Try pinging each other through the tunnel
@@ -26,113 +26,196 @@ To actually use it through a relaying nameserver, see below.
HOW TO USE:
Note: server and client are required to speak the exact same protocol. In most
cases, this means running the same iodine version. Unfortunately, implementing
backward and forward protocol compatibility is usually not feasible.
Server side:
To use this tunnel, you need control over a real domain (like mytunnel.com),
and a server with a public IP number. If the server already runs a DNS
server, change the listening port and then use the -b option to let
iodined forward the DNS requests. Then, delegate a subdomain
(say, tunnel1.mytunnel.com) to the server. If you use BIND for the domain,
add these lines to the zone file:
To use this tunnel, you need control over a real domain (like mydomain.com),
and a server with a public IP address to run iodined on. If this server
already runs a DNS program, change its listening port and then use iodined's
-b option to let iodined forward the DNS requests. (Note that this procedure
is not advised in production environments, because iodined's DNS forwarding
is not completely transparent.)
tunnel1host IN A 10.15.213.99
tunnel1 IN NS tunnel1host.mytunnel.com.
Then, delegate a subdomain (say, t1.mydomain.com) to the iodined server.
If you use BIND for your domain, add two lines like these to the zone file:
Do not use CNAME instead of A above.
If your server has a dynamic IP, use a dynamic dns provider:
t1 IN NS t1ns.mydomain.com. ; note the dot!
t1ns IN A 10.15.213.99
tunnel1 IN NS tunnel1host.mydyndnsprovider.com
The "NS" line is all that's needed to route queries for the "t1" subdomain
to the "t1ns" server. We use a short name for the subdomain, to keep as much
space as possible available for the data traffic. At the end of the "NS" line
is the name of your iodined server. This can be any name, pointing anywhere,
but in this case it's easily kept in the same zone file. It must be a name
(not an IP address), and that name itself must have an A record (not a CNAME).
Now any DNS querys for domains ending with tunnel1.mytunnnel.com will be sent
to your server. Start iodined on the server. The first argument is the tunnel
IP address (like 192.168.99.1) and the second is the assigned domain (in this
case tunnel1.mytunnel.com). The -f argument will keep iodined running in the
foreground, which helps when testing. iodined will start a virtual interface,
and also start listening for DNS queries on UDP port 53. Either enter a
password on the commandline (-P pass) or after the server has started. Now
everything is ready for the client.
If your iodined server has a dynamic IP, use a dynamic dns provider. Simply
point the "NS" line to it, and leave the "A" line out:
t1 IN NS myname.mydyndnsprovider.com. ; note the dot!
Then reload or restart your nameserver program. Now any DNS queries for
domains ending in t1.mydomain.com will be sent to your iodined server.
Finally start iodined on your server. The first argument is the IP address
inside the tunnel, which can be from any range that you don't use yet (for
example 192.168.99.1), and the second argument is the assigned domain (in this
case t1.mydomain.com). Using the -f option will keep iodined running in the
foreground, which helps when testing. iodined will open a virtual interface
("tun device"), and will also start listening for DNS queries on UDP port 53.
Either enter a password on the commandline (-P pass) or after the server has
started. Now everything is ready for the client.
If there is a chance you'll be using an iodine tunnel from unexpected
environments, start iodined with a -c option.
Resulting commandline in this example situation:
./iodined -f -c -P secretpassword 192.168.99.1 t1.mydomain.com
Client side:
All the setup is done, just start iodine. It takes up to two arguments, the
All the setup is done, just start iodine. It takes one or two arguments, the
first is the local relaying DNS server (optional) and the second is the domain
used (tunnel1.mytunnnel.com). If DNS queries are allowed to any computer, you
can use the tunnel endpoint (example: 10.15.213.99 or tunnel1host.mytunnel.com)
as the first argument. The tunnel interface will get an IP close to the servers
(in this case 192.168.99.2) and a suitable MTU. Enter the same password as on
the server either by argument or after the client has started. Now you should
be able to ping the other end of the tunnel from either side.
you used (t1.mydomain.com). If you don't specify the first argument, the
system's current DNS setting will be consulted.
If DNS queries are allowed to any computer, you can directly give the iodined
server's address as first argument (in the example: t1ns.mydomain.com or
10.15.213.99). In that case, it may also happen that _any_ traffic is allowed
to the DNS port (53 UDP) of any computer. Iodine will detect this, and switch
to raw UDP tunneling if possible. To force DNS tunneling in any case, use the
-r option (especially useful when testing within your own network).
The client's tunnel interface will get an IP close to the server's (in this
case 192.168.99.2 or .3 etc.) and a suitable MTU. Enter the same password as
on the server either as commandline option or after the client has started.
Using the -f option will keep the iodine client running in the foreground.
Resulting commandline in this example situation:
./iodine -f -P secretpassword t1.mydomain.com
(add -r to force DNS tunneling even if raw UDP tunneling would be possible)
From either side, you should now be able to ping the IP address on the other
end of the tunnel. In this case, ping 192.168.99.1 from the iodine client, and
192.168.99.2 or .3 etc. from the iodine server.
MISC. INFO:
Routing:
The normal case is to route all traffic through the DNS tunnel. To do this, first
add a route to the nameserver you use with the default gateway as gateway. Then
replace the default gateway with the servers IP address within the DNS tunnel,
and configure the server to do NAT.
It is possible to route all traffic through the DNS tunnel. To do this, first
add a host route to the nameserver used by iodine over the wired/wireless
interface with the default gateway as gateway. Then replace the default
gateway with the iodined server's IP address inside the DNS tunnel, and
configure the server to do NAT.
However, note that the tunneled data traffic is not encrypted at all, and can
be read and changed by external parties relatively easily. For maximum
security, run a VPN through the DNS tunnel (=double tunneling), or use secure
shell (SSH) access, possibly with port forwarding. The latter can also be used
for web browsing, when you run a web proxy (for example Privoxy) on your
server.
Testing:
The iodined server replies to NS requests sent for subdomains of the tunnel
domain. If your iodined subdomain is t1.mydomain.com, send a NS request for
foo123.t1.mydomain.com to see if the delegation works. dig is a good tool
for this:
dig -t NS foo123.t1.mydomain.com
Also, the iodined server will answer requests starting with 'z' for any of the
supported request types, for example:
dig -t TXT z456.t1.mydomain.com
dig -t SRV z456.t1.mydomain.com
dig -t CNAME z456.t1.mydomain.com
The reply should look like garbled text in all these cases.
Operational info:
The DNS-response fragment size is normally autoprobed to get maximum bandwidth.
To force a specific value (and speed things up), use the -m option.
The iodined server replies to NS requests sent for subdomains of the tunnel
domain. If your domain is tunnel.com, send a NS request for foo.tunnel.com
to see if the delegation works. dig is a good tool for this:
dig -t NS foo123.tunnel.com
The DNS hostnames are normally used up to their maximum length, 255 characters.
Some DNS relays have been found that answer full-length queries rather
unreliably, giving widely varying (and mostly very bad) results of the
fragment size autoprobe on repeated tries. In these cases, use the -M switch
to reduce the DNS hostname length to for example 200 characters, which makes
these DNS relays much more stable. This is also useful on some "de-optimizing"
DNS relays that stuff the response with two full copies of the query, leaving
very little space for downstream data (also not capable of EDNS0). The -M
switch can trade some upstream bandwidth for downstream bandwidth. Note that
the minimum -M value is about 100, since the protocol can split packets (1200
bytes max) in only 16 fragments, requiring at least 75 real data bytes per
fragment.
The upstream data is sent gzipped encoded with Base32, or Base64 if the relay
server support '+' in domain names. DNS protocol allows one query per packet,
and one query can be max 256 chars. Each domain name part can be max 63 chars.
So your domain name and subdomain should be as short as possible to allow
maximum upstream throughput.
The upstream data is sent gzipped encoded with Base32; or Base64 if the relay
server supports mixed case and '+' in domain names; or Base64u if '_' is
supported instead; or Base128 if high-byte-value characters are supported.
This upstream encoding is autodetected. The DNS protocol allows one query per
packet, and one query can be max 256 chars. Each domain name part can be max
63 chars. So your domain name and subdomain should be as short as possible to
allow maximum upstream throughput.
The default is to use DNS NULL-type queries, as this provides the largest
downstream bandwidth. If your DNS server blocks NULL requests, try TXT or
CNAME queries via the -T option. Also supported are A (returning CNAME) and
MX requests, but these may/will cause additional lookups by "smart" caching
nameservers to get an actual IP address, which may either slow down or fail
completely. DNS responses for non-NULL are Base32 encoded by default, which
should always work. For more bandwidth, try Base64 or Raw (TXT only) via the
-O option. If Base64/Raw doesn't work, you'll see many failures in the
fragment size autoprobe.
Several DNS request types are supported, with the NULL type expected to provide
the largest downstream bandwidth. Other available types are TXT, SRV, MX,
CNAME and A (returning CNAME), in decreasing bandwidth order. Normally the
"best" request type is autodetected and used. However, DNS relays may impose
limits on for example NULL and TXT, making SRV or MX actually the best choice.
This is not autodetected, but can be forced using the -T option. It is
advisable to try various alternatives especially when the autodetected request
type provides a downstream fragment size of less than 200 bytes.
Note that SRV, MX and A (returning CNAME) queries may/will cause additional
lookups by "smart" caching nameservers to get an actual IP address, which may
either slow down or fail completely.
DNS responses for non-NULL queries can be encoded with the same set of codecs
as upstream data. This is normally also autodetected, but no fully exhaustive
tests are done, so some problems may not be noticed when selecting more
advanced codecs. In that case, you'll see failures/corruption in the fragment
size autoprobe. In particular, several DNS relays have been found that change
replies returning hostnames (SRV, MX, CNAME, A) to lowercase only when that
hostname exceeds ca. 180 characters. In these and similar cases, use the -O
option to try other downstream codecs; Base32 should always work.
Normal operation now is for the server to _not_ answer a DNS request until
the next DNS request has come in, a.k.a. being "lazy". This way, the server
will always have a DNS request handy when new downstream data has to be sent.
This greatly improves (interactive) performance and latency, and allows to
slow down the quiescent ping requests to 4 second intervals by default.
In fact, the main purpose of the pings now is to force a reply to the previous
ping, and prevent DNS server timeouts (usually 5-10 seconds per RFC1035).
In the unlikely case that you do experience DNS server timeouts (SERVFAIL),
decrease the -I option to 1. If you are running on a local network without
any DNS server in-between, try -I 50 (iodine and iodined time out after 60
seconds). The only time you'll notice a slowdown, is when DNS reply packets
go missing; the iodined server then has to wait for a new ping to re-send the
data. You can speed this up by generating some upstream traffic (keypress,
ping). If this happens often, check your network for bottlenecks and/or run
with -I1 .
slow down the quiescent ping requests to 4 second intervals by default, and
possibly much slower. In fact, the main purpose of the pings now is to force
a reply to the previous ping, and prevent DNS server timeouts (usually at
least 5-10 seconds per RFC1035). Some DNS servers are more impatient and will
give SERVFAIL errors (timeouts) in periods without tunneled data traffic. All
data should still get through in these cases, but iodine will reduce the ping
interval to 1 second anyway (-I1) to reduce the number of error messages. This
may not help for very impatient DNS relays like dnsadvantage.com (ultradns),
which time out in 1 second or even less. Yet data will still get trough, and
you can ignore the SERVFAIL errors.
Some DNS servers appear to be quite impatient and start retrying DNS requests
(with _different_ DNS ids!) when an answer does not appear within a few
milliseconds. Usually they scale back retries when iodined's lazy mode
repeatedly takes several seconds to answer; and they scale up retries again
when iodined answers fast during heavy data transfer. Some commercial DNS
servers advertise this as "carrier-grade adaptive retransmission techniques".
The effect will only be visible in the network traffic at the iodined server,
and will not affect the client's connection. Iodined has rather elaborate
logic to deal with (i.e., ignore) these unwanted duplicates.
If you are running on a local network without any DNS server in-between, try
-I 50 (iodine and iodined close the connection after 60 seconds of silence).
The only time you'll notice a slowdown, is when DNS reply packets go missing;
the iodined server then has to wait for a new ping to re-send the data. You can
speed this up by generating some upstream traffic (keypress, ping). If this
happens often, check your network for bottlenecks and/or run with -I1.
Other DNS servers, notably the opendns.com network, seem to regard iodined's
lazyness as incompetency, and will start shuffling requests around, possibly
in an attempt to reduce iodined's workload. The resulting out-of-sequence DNS
traffic works quite badly for lazy mode. The iodine client will detect this,
and switch back to legacy mode ("immediate ping-pong") automatically. In these
cases, start the iodine client with -L0 to prevent it from operating in lazy
mode altogether. Note that this will negatively affect interactive performance
and latency, especially in the downstream direction.
The delayed answering in lazy mode will cause some "carrier grade" commercial
DNS relays to repeatedly re-send the same DNS query to the iodined server.
If the DNS relay is actually implemented as a pool of parallel servers,
duplicate requests may even arrive from multiple sources. This effect will
only be visible in the network traffic at the iodined server, and will not
affect the client's connection. Iodined will notice these duplicates, and send
the same answer (when its time has come) to both the original query and the
latest duplicate. After that, the full answer is cached for a short while.
Delayed duplicates that arrive at the server even later, get a reply that the
iodine client will ignore (if it ever arrives there).
If you have problems, try inspecting the traffic with network monitoring tools
and make sure that the relaying DNS server has not cached the response. A
cached error message could mean that you started the client before the server.
The -D (and -DD) option on the server can also show received and sent queries.
like tcpdump or ethereal/wireshark, and make sure that the relaying DNS server
has not cached the response. A cached error message could mean that you
started the client before the server. The -D (and -DD) option on the server
can also show received and sent queries.
TIPS & TRICKS:
@@ -165,13 +248,16 @@ PERFORMANCE:
This section tabulates some performance measurements. To view properly, use
a fixed-width font like Courier.
Measurements were done in protocol 00000500 with lazy mode unless indicated
otherwise. Upstream encoding always Base64.
Measurements were done in protocol 00000502 in lazy mode; upstream encoding
always Base128; iodine -M255; iodined -m1130. Network conditions were not
extremely favorable; results are not benchmarks but a realistic indication of
real-world performance that can be expected in similar situations.
Upstream/downstream throughput was measured by scp'ing a file previously
read from /dev/urandom (i.e. incompressible), and measuring size with
"ls -l ; sleep 30 ; ls -l" on a separate non-tunneled connection. Given the
large scp block size of 16 kB, this gives a resolution of 4.3 kbit/s, which
explains why many values are exactly equal.
explains why some values are exactly equal.
Ping round-trip times measured with "ping -c100", presented are average rtt
and mean deviation (indicating spread around the average), in milliseconds.
@@ -185,43 +271,28 @@ Laptop -> Wifi AP -> Home server -> DSL provider -> Datacenter
------------------------------------------------------------------------------
iodine -> Wifi AP :53
-Tnull (= -Oraw) 982 39.3 148.5 26.7 3.1 26.6 3.0
-Tnull (= -Oraw) 982 43.6 131.0 28.0 4.6 26.8 3.4
iodine -> Home server :53
-Tnull (= -Oraw) 1174 43.6 174.7 25.2 4.0 25.5 3.4
-Tnull (= -Oraw) 1174 48.0 305.8 26.6 5.0 26.9 8.4
iodine -> DSL provider :53
-Tnull (= -Oraw) 1174 52.4 200.9 20.3 3.2 20.3 2.7
-Ttxt -Obase32 730 52.4 192.2*
-Ttxt -Obase64 874 52.4 192.2
-Ttxt -Oraw 1162 52.4 192.2
-Tcname -Obase32 148 52.4 48.0
-Tcname -Obase64 181 52.4 61.1
-Tnull (= -Oraw) 1174 56.7 367.0 20.6 3.1 21.2 4.4
-Ttxt -Obase32 730 56.7 174.7*
-Ttxt -Obase64 874 56.7 174.7
-Ttxt -Obase128 1018 56.7 174.7
-Ttxt -Oraw 1162 56.7 358.2
-Tsrv -Obase128 910 56.7 174.7
-Tcname -Obase32 151 56.7 43.6
-Tcname -Obase128 212 56.7 52.4
iodine -> DSL provider :53
wired (no Wifi) -Tnull 1174 65.5 244.6 17.7 1.9 17.8 1.6
wired (no Wifi) -Tnull 1174 74.2 585.4 20.2 5.6 19.6 3.4
[192.2* : nice, because still 2frag/packet]
[174.7* : these all have 2frag/packet]
Situation 2:
Laptop -> (wire) -> (Home server) -> (DSL) -> opendns.com -> Datacenter
iodine DNS cache iodined
downstr. upstream downstr. ping-up ping-down
fragsize kbit/s kbit/s avg +/-mdev avg +/-mdev
------------------------------------------------------------------------------
iodine -> opendns.com :53
-Tnull -L1 (lazy mode) 230 - - 404.4 196.2 663.8 679.6
(20% lost) (2% lost)
-Tnull -L0 (legacy mode) 230 5.6 7.4 197.3 4.7 610.8 323.5
[Note: Throughput measured over 300 seconds to get better resolution]
Situation 3:
Laptop -> Wifi+vpn / wired -> Home server
iodine iodined
@@ -229,9 +300,9 @@ Laptop -> Wifi+vpn / wired -> Home server
fragsize kbit/s kbit/s avg +/-mdev avg +/-mdev
------------------------------------------------------------------------------
wifi + openvpn -Tnull 1186 183.5 611.6 5.7 1.4 7.0 2.7
wifi + openvpn -Tnull 1186 166.0 1022.3 6.3 1.3 6.6 1.6
wired -Tnull 1186 685.9 2350.5 1.3 0.1 1.4 0.4
wired -Tnull 1186 677.2 2464.1 1.3 0.2 1.3 0.1
Performance is strongly coupled to low ping times, as iodine requires