Applied patch from #88, thanks a lot!

This commit is contained in:
J. A. Bezemer
2009-12-29 20:00:57 +00:00
committed by Erik Ekman
parent 1a26a91db3
commit b177901d38
19 changed files with 2813 additions and 1054 deletions

View File

@@ -1,5 +1,5 @@
.\" groff -man -Tascii iodine.8
.TH IODINE 8 "SEP 2009" "User Manuals"
.TH IODINE 8 "DEC 2009" "User Manuals"
.SH NAME
iodine, iodined \- tunnel IPv4 over DNS
.SH SYNOPSIS
@@ -19,6 +19,8 @@ iodine, iodined \- tunnel IPv4 over DNS
.I device
.B ] [-m
.I fragsize
.B ] [-M
.I namelen
.B ] [-z
.I context
.B ] [-F
@@ -84,6 +86,10 @@ downstream.
is the client application,
.B iodined
is the server.
Note: server and client are required to speak the exact same protocol. In most
cases, this means running the same iodine version. Unfortunately, implementing
backward and forward protocol compatibility is usually not feasible.
.SH OPTIONS
.SS Common Options:
.TP
@@ -127,49 +133,85 @@ will be sent to the server instead of the DNS relay.
Force maximum downstream fragment size. Not setting this will cause the
client to automatically probe the maximum accepted downstream fragment size.
.TP
.B -M namelen
Maximum length of upstream hostnames, default 255.
Usable range ca. 100 to 255.
Use this option to scale back upstream bandwidth in favor of downstream
bandwidth.
Also useful for DNS servers that perform unreliably when using full-length
hostnames, noticable when fragment size autoprobe returns very
different results each time.
.TP
.B -T dnstype
DNS request type.
.I NULL
is default. If this doesn't work, try
.I TXT
(some less bandwidth) or
DNS request type override.
By default, autodetection will probe for working DNS request types, and
will select the request type that is expected to provide the most bandwidth.
However, it may turn out that a DNS relay imposes limits that skew the
picture, which may lead to an "unexpected" DNS request type providing
more bandwidth.
In that case, use this option to override the autodetection.
In (expected) decreasing bandwidth order, the supported DNS request types are:
.IR NULL ,
.IR TXT ,
.IR SRV ,
.IR MX ,
.I CNAME
(much less bandwidth). Also supported are
and
.I A
(returning CNAME) and
(returning CNAME).
Note that
.IR SRV ,
.I MX
requests, but these may/will cause additional lookups by "smart" caching
and
.I A
may/will cause additional lookups by "smart" caching
nameservers to get an actual IP address, which may either slow down or fail
completely.
.TP
.B -O downenc
Downstream encoding for all query type responses except NULL.
Force downstream encoding type for all query type responses except NULL.
Default is autodetected, but may not spot all problems for the more advanced
codecs.
Use this option to override the autodetection.
.I Base32
is default and should always work.
is the lowest-grade codec and should always work; this is used when
autodetection fails.
.I Base64
provides more bandwidth, but may not work on all nameservers.
.I Base64u
is equal to Base64 except in using underscore ('_')
instead of plus sign ('+'), possibly working where
.I Base64
does not.
.I Base128
uses high byte values (mostly accented letters in iso8859-1),
which might work with some nameservers.
For TXT queries,
.I Raw
will provide maximum performance. This will only work if the nameserver
will provide maximum performance, but this will only work if the nameserver
path is fully 8-bit-clean for responses that are assumed to be "legible text".
.TP
.B -L 0|1
Lazy-mode switch.
\-L1 (default): Use lazy mode if server supports it, for improved
performance and decreased latency.
Some DNS servers, notably the opendns.com network, appear unstable when
handling lazy mode DNS traffic and will re-order requests. If this occurs,
you will notice fluctuating response speed in interactive sessions.
The iodine client will eventually detect this and switch back to legacy
mode automatically. Use \-L0 to force running in legacy mode
\-L1 (default): Use lazy mode for improved performance and decreased latency.
A very small minority of DNS relays appears to be unable to handle the
lazy mode traffic pattern, resulting in no or very little data coming through.
The iodine client will detect this and try to switch back to legacy mode,
but this may not always work.
In these situations use \-L0 to force running in legacy mode
(implies \-I1).
.TP
.B -I interval
Maximum interval between requests (pings) so that intermediate DNS
servers will not time out. Default is 4 in lazy mode, which will work
fine in almost all cases. Decrease if you get SERVFAIL errors in periods
without tunneled data traffic. To get absolute minimum DNS traffic,
increase well above 4 until SERVFAIL errors start to occur.
fine in most cases. When too many SERVFAIL errors occur, iodine
will automatically reduce this to 1.
To get absolute minimum DNS traffic,
increase well above 4, but not so high that SERVFAIL errors start to occur.
There are some DNS relays with very small timeouts,
notably dnsadvantage.com (ultradns), that will give
SERVFAIL errors even with \-I1; data will still get trough,
and these errors can be ignored.
Maximum useful value is 59, since iodined will close a client's
connection after 60 seconds of inactivity.
.SS Server Options:
@@ -190,11 +232,16 @@ Increase debug level. Level 1 prints info about each RX/TX packet.
Implies the
.B -f
option.
On level 2 (-DD) or higher, DNS queries will be printed literally.
When using Base128 upstream encoding, this is best viewed as
ISO Latin-1 text instead of (illegal) UTF-8.
This is easily done with : "LC_ALL=C luit iodined -DD ..."
(see luit(1)).
.TP
.B -m mtu
Set 'mtu' as mtu size for the tun device.
This will be sent to the client on login, and the client will use the same mtu
for its tun device. Default 1200. Note that the DNS traffic will be
for its tun device. Default 1130. Note that the DNS traffic will be
automatically fragmented when needed.
.TP
.B -l listen_ip
@@ -236,97 +283,22 @@ must be the same on both the client and the server.
.SS Server Arguments:
.TP
.B tunnel_ip[/netmask]
+This is the server's ip address on the tun interface. The client will be
This is the server's ip address on the tun interface. The client will be
given the next ip number in the range. It is recommended to use the
10.0.0.0 or 172.16.0.0 ranges. The default netmask is /27, can be overriden
by specifying it here. Using a smaller network will limit the number of
concurrent users.
.TP
.B topdomain
+The dns traffic is expected to arrive as queries for
The dns traffic is expected to arrive as queries for
subdomains under 'topdomain'. This is normally a subdomain to a domain you
own. Use a short domain name to get better throughput. This argument must be
the same on both the client and the server. Queries for domains other
than 'topdomain' will be forwarded when the \-b option is given, otherwise
they will be dropped.
.SH EXAMPLES
.SS Quickstart:
.TP
Try it out within your own LAN! Follow these simple steps:
.TP
- On your server, run: ./iodined \-f 10.0.0.1 test.asdf
(If you already use the 10.0.0.0 network, use another internal net like
172.16.0.0)
.TP
- Enter a password
.TP
- On the client, run: ./iodine \-f 192.168.0.1 test.asdf
(Replace 192.168.0.1 with the server's ip address)
.TP
- Enter the same password
.TP
- Now the client has the tunnel ip 10.0.0.2 and the server has 10.0.0.1
.TP
- Try pinging each other through the tunnel
.TP
- Done! :)
.TP
To actually use it through a relaying nameserver, see below.
.SS Full setup:
.TP
.B Server side:
To use this tunnel, you need control over a real domain (like mytunnel.com),
and a server with a public IP number. If the server already runs a DNS
server, change the listening port and then use the \-b option to let
iodined forward the DNS requests. Then, delegate a subdomain
(say, tunnel1.mytunnel.com) to the server. If you use BIND for the domain,
add these lines to the zone file (replace 10.15.213.99 with your server ip):
.nf
tunnel1host IN A 10.15.213.99
tunnel1 IN NS tunnel1host.mytunnel.com.
.fi
Now any DNS querys for domains ending with tunnel1.mytunnnel.com will be sent
to your server. Start iodined on the server. The first argument is the tunnel
IP address (like 192.168.99.1) and the second is the assigned domain (in this
case tunnel1.mytunnel.com). The \-f argument will keep iodined running in the
foreground, which helps when testing. iodined will start a virtual interface,
and also start listening for DNS queries on UDP port 53. Either enter a
password on the commandline (\-P pass) or after the server has started. Now
everything is ready for the client.
.TP
.B Client side:
All the setup is done, just start iodine. It also takes two
arguments, the first is the local relaying DNS server and the second is the
domain used (tunnel1.mytunnnel.com). If DNS queries are allowed to any
computer, you can use the tunnel endpoint (example: 10.15.213.99 or
tunnel1host.mytunnel.com) as the first argument. The tunnel interface will get
an IP close to the servers (in this case 192.168.99.2) and a suitable MTU.
Enter the same password as on the server either by argument or after the client
has started. Now you should be able to ping the other end of the tunnel from
either side.
.TP
.B Routing:
The normal case is to route all traffic through the DNS tunnel. To do this, first
add a route to the nameserver you use with the default gateway as gateway. Then
replace the default gateway with the servers IP address within the DNS tunnel,
and configure the server to do NAT.
.TP
.B Troubleshooting:
Use the \-D option on the server to show received and sent queries, or use a
tool like Wireshark/tcpdump. The iodined server replies to NS requests sent for
subdomains of the tunnel domain. If your domain is tunnel.com, send a NS
request for foo.tunnel.com to see if the delegation works. dig is a good tool
for this:
.nf
dig \-t NS foo123.tunnel.com
.fi
.TP
.B MTU issues:
These issues should be solved now, with automatic fragmentation of downstream
packets. There should be no need to set the MTU explicitly on the server.
See the README file for both a quick test scenario, and a detailed description
of real-world deployment.
.SH SECURITY
Login is a relatively secure challenge-response MD5 hash, with the
password never passing the wire.
@@ -336,10 +308,9 @@ encrypted in any way. The DNS traffic is also vulnerable to replay,
injection and man-in-the-middle attacks, especially when iodined is used
with the \-c option. Use of ssh or vpn tunneling is strongly recommended.
On both server and client, use
.I iptables
,
.IR iptables ,
.I pf
or other firewlls to block all traffic coming in from the tun interfaces,
or other firewalls to block all traffic coming in from the tun interfaces,
except to the used ssh or vpn ports.
.SH ENVIRONMENT
.SS IODINE_PASS
@@ -348,14 +319,14 @@ If the environment variable
is set, iodine will use the value it is set to as password instead of asking
for one. The
.B -P
option still has preference.
option still has precedence.
.SS IODINED_PASS
If the environment variable
.B IODINED_PASS
is set, iodined will use the value it is set to as password instead of asking
for one. The
.B -P
option still has preference.
option still has precedence.
.El
.SH SEE ALSO
The README file in the source distribution contains some more elaborate