160 lines
6.0 KiB
C++
Raw Normal View History

#ifndef __FPROTO_GTWT03_H__
#define __FPROTO_GTWT03_H__
#include "weatherbase.hpp"
#define AURIOL_AHFL_CONST_DATA 0b0100
typedef enum {
GT_WT03DecoderStepReset = 0,
GT_WT03DecoderStepCheckPreambule,
GT_WT03DecoderStepSaveDuration,
GT_WT03DecoderStepCheckDuration,
} GT_WT03DecoderStep;
class FProtoWeatherGTWT03 : public FProtoWeatherBase {
public:
FProtoWeatherGTWT03() {
sensorType = FPW_GTWT03;
}
void feed(bool level, uint32_t duration) {
switch (parser_step) {
case GT_WT03DecoderStepReset:
if ((level) && (DURATION_DIFF(duration, te_short * 3) <
te_delta * 2)) {
parser_step = GT_WT03DecoderStepCheckPreambule;
te_last = duration;
header_count = 0;
}
break;
case GT_WT03DecoderStepCheckPreambule:
if (level) {
te_last = duration;
} else {
if ((DURATION_DIFF(te_last, te_short * 3) < te_delta * 2) &&
(DURATION_DIFF(duration, te_short * 3) < te_delta * 2)) {
// Found preambule
header_count++;
} else if (header_count == 4) {
if ((DURATION_DIFF(te_last, te_short) < te_delta) &&
(DURATION_DIFF(duration, te_long) < te_delta)) {
decode_data = 0;
decode_count_bit = 0;
subghz_protocol_blocks_add_bit(0);
parser_step = GT_WT03DecoderStepSaveDuration;
} else if (
(DURATION_DIFF(te_last, te_long) < te_delta) &&
(DURATION_DIFF(duration, te_short) < te_delta)) {
decode_data = 0;
decode_count_bit = 0;
subghz_protocol_blocks_add_bit(1);
parser_step = GT_WT03DecoderStepSaveDuration;
} else {
parser_step = GT_WT03DecoderStepReset;
}
} else {
parser_step = GT_WT03DecoderStepReset;
}
}
break;
case GT_WT03DecoderStepSaveDuration:
if (level) {
te_last = duration;
parser_step = GT_WT03DecoderStepCheckDuration;
} else {
parser_step = GT_WT03DecoderStepReset;
}
break;
case GT_WT03DecoderStepCheckDuration:
if (!level) {
if (((DURATION_DIFF(te_last, te_short * 3) < te_delta * 2) &&
(DURATION_DIFF(duration, te_short * 3) < te_delta * 2))) {
if ((decode_count_bit ==
min_count_bit_for_found) &&
ws_protocol_gt_wt_03_check_crc()) {
data = decode_data;
data_count_bit = decode_count_bit;
ws_protocol_gt_wt_03_remote_controller();
if (callback) callback(this);
}
decode_data = 0;
decode_count_bit = 0;
header_count = 1;
parser_step = GT_WT03DecoderStepCheckPreambule;
break;
} else if (
(DURATION_DIFF(te_last, te_short) < te_delta) &&
(DURATION_DIFF(duration, te_long) < te_delta)) {
subghz_protocol_blocks_add_bit(0);
parser_step = GT_WT03DecoderStepSaveDuration;
} else if (
(DURATION_DIFF(te_last, te_long) < te_delta) &&
(DURATION_DIFF(duration, te_short) < te_delta)) {
subghz_protocol_blocks_add_bit(1);
parser_step = GT_WT03DecoderStepSaveDuration;
} else {
parser_step = GT_WT03DecoderStepReset;
}
} else {
parser_step = GT_WT03DecoderStepReset;
}
break;
}
}
protected:
uint32_t te_short = 285;
uint32_t te_long = 570;
uint32_t te_delta = 120;
uint32_t min_count_bit_for_found = 41;
void ws_protocol_gt_wt_03_remote_controller() {
id = data >> 33;
humidity = (data >> 25) & 0xFF;
if (humidity <= 10) { // actually the sensors sends 10 below working range of 20%
humidity = 0;
} else if (humidity > 95) { // actually the sensors sends 110 above working range of 90%
humidity = 100;
}
battery_low = (data >> 24) & 1;
btn = (data >> 23) & 1;
channel = ((data >> 21) & 0x03) + 1;
if (!((data >> 20) & 1)) {
temp = (float)((data >> 9) & 0x07FF) / 10.0f;
} else {
temp = (float)((~(data >> 9) & 0x07FF) + 1) / -10.0f;
}
}
bool ws_protocol_gt_wt_03_check_crc() {
uint8_t msg[] = {
static_cast<uint8_t>(decode_data >> 33),
static_cast<uint8_t>(decode_data >> 25),
static_cast<uint8_t>(decode_data >> 17),
static_cast<uint8_t>(decode_data >> 9)};
uint8_t sum = 0;
for (unsigned k = 0; k < sizeof(msg); ++k) {
uint8_t data = msg[k];
uint16_t key = 0x3100;
for (int i = 7; i >= 0; --i) {
// XOR key into sum if data bit is set
if ((data >> i) & 1) sum ^= key & 0xff;
// roll the key right
key = (key >> 1);
}
}
return ((sum ^ (uint8_t)((decode_data >> 1) & 0xFF)) == 0x2D);
}
};
#endif