202 lines
5.7 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2018 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "portapack_shared_memory.hpp"
2024-10-07 15:58:37 +02:00
#include "proc_acars.hpp"
#include "dsp_fir_taps.hpp"
2024-10-07 15:58:37 +02:00
#include "audio_dma.hpp"
#include "event_m4.hpp"
2024-10-07 15:58:37 +02:00
#define SYN 0x16
#define SOH 0x01
#define STX 0x02
#define ETX 0x83
#define ETB 0x97
#define DLE 0x7f
ACARSProcessor::ACARSProcessor() {
2024-10-07 15:58:37 +02:00
audio::dma::init_audio_out();
decim_0.configure(taps_11k0_decim_0.taps);
decim_1.configure(taps_11k0_decim_1.taps);
2024-10-07 15:58:37 +02:00
decode_data = 0;
decode_count_bit = 0;
audio_output.configure(false);
baseband_thread.start();
}
void ACARSProcessor::execute(const buffer_c8_t& buffer) {
/* 2.4576MHz, 2048 samples */
const auto decim_0_out = decim_0.execute(buffer, dst_buffer);
const auto decim_1_out = decim_1.execute(decim_0_out, dst_buffer);
const auto decimator_out = decim_1_out;
/* 38.4kHz, 32 samples */
feed_channel_stats(decimator_out);
2024-10-07 15:58:37 +02:00
auto audio = demod.execute(decimator_out, audio_buffer);
audio_output.write(audio);
for (size_t i = 0; i < decimator_out.count; i++) {
if (mf.execute_once(decimator_out.p[i])) {
clock_recovery(mf.get_output());
}
}
}
2024-10-07 15:58:37 +02:00
void ACARSProcessor::add_bit(uint8_t bit) {
decode_data = decode_data << 1 | bit;
decode_count_bit++;
}
uint16_t ACARSProcessor::update_crc(uint8_t dataByte) {
(void)dataByte;
return 0;
}
void ACARSProcessor::sendDebug() {
// if (curr_state <= 1) return;
message.state = curr_state;
shared_memory.application_queue.push(message);
}
void ACARSProcessor::reset() {
decode_data = 0;
decode_count_bit = 0;
curr_state = WSYN;
message.msg_len = 0;
memset(message.message, 0, 250);
message.crc[0] = 0;
message.crc[1] = 0;
parity_errors = 0;
}
void ACARSProcessor::consume_symbol(const float raw_symbol) {
const uint_fast8_t sliced_symbol = (raw_symbol >= 0.0f) ? 1 : 0;
2024-10-07 15:58:37 +02:00
add_bit(sliced_symbol);
if (curr_state == WSYN && decode_count_bit == 8) {
if ((decode_data & 0xff) == SYN) {
curr_state = SYN2;
decode_data = 0;
decode_count_bit = 0;
} else {
decode_count_bit -= 1; // just drop the first bit
}
return;
}
if (curr_state == SYN2 && decode_count_bit == 8) {
if ((decode_data & 0xff) == SYN) {
curr_state = SOH1;
decode_data = 0;
decode_count_bit = 0;
sendDebug();
return;
}
// here i don't have the right packets. so reset
reset();
}
if (curr_state == SOH1 && decode_count_bit == 8) {
if ((decode_data & 0xff) == SOH) {
reset();
curr_state = TXT;
sendDebug();
return;
}
message.message[0] = (decode_data & 0xff); // debug
reset();
sendDebug();
}
if (curr_state == TXT && decode_count_bit == 8) {
uint8_t ch = (decode_data & 0xff);
message.message[message.msg_len++] = ch;
if (!ParityCheck::parity_check(ch)) {
// parity error
parity_errors++;
if (parity_errors > 4) {
reset(); // too many parity errors, skip packet
sendDebug();
return;
}
}
if (ch == ETX || ch == ETB) {
curr_state = CRC1;
sendDebug();
decode_data = 0;
decode_count_bit = 0;
return;
}
if (message.msg_len > 240) {
reset();
sendDebug();
}
if (message.msg_len > 20 && ch == DLE) {
message.msg_len -= 3;
message.crc[0] = message.message[message.msg_len];
message.crc[1] = message.message[message.msg_len + 1];
curr_state = CRC2;
sendDebug();
// to hack the path:
decode_data = message.crc[1];
} else {
decode_count_bit = 0;
decode_data = 0;
return;
}
}
if (curr_state == CRC1 && decode_count_bit == 8) {
message.crc[0] = (decode_data & 0xff);
curr_state = CRC2;
decode_data = 0;
decode_count_bit = 0;
sendDebug();
}
2024-10-07 15:58:37 +02:00
if (curr_state == CRC2 && decode_count_bit == 8) {
message.crc[1] = (decode_data & 0xff);
// send it to app cpu, and it'll take care of the rest
payload_handler();
reset();
curr_state = END;
decode_data = 0;
decode_count_bit = 0;
sendDebug();
}
if (curr_state == END && decode_count_bit == 8) {
reset();
sendDebug();
}
}
2024-10-07 15:58:37 +02:00
void ACARSProcessor::payload_handler() {
message.state = 255; // to indicate this is an actual payload, not a debug packet
shared_memory.application_queue.push(message);
}
int main() {
EventDispatcher event_dispatcher{std::make_unique<ACARSProcessor>()};
event_dispatcher.run();
return 0;
2024-10-07 15:58:37 +02:00
}