mayhem-firmware/firmware/baseband/dsp_decimate.hpp

244 lines
5.7 KiB
C++
Raw Normal View History

2015-07-08 15:39:24 +00:00
/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef __DSP_DECIMATE_H__
#define __DSP_DECIMATE_H__
#include <cstdint>
#include <array>
#include <memory>
#include <algorithm>
#include "utility.hpp"
2015-07-08 15:39:24 +00:00
#include "dsp_types.hpp"
namespace dsp {
namespace decimate {
class TranslateByFSOver4AndDecimateBy2CIC3 {
public:
buffer_c16_t execute(
buffer_c8_t src,
buffer_c16_t dst
);
private:
uint32_t _q1_i0 { 0 };
uint32_t _q0_i1 { 0 };
};
class DecimateBy2CIC3 {
public:
buffer_c16_t execute(
buffer_c16_t src,
buffer_c16_t dst
);
private:
uint32_t _iq0 { 0 };
uint32_t _iq1 { 0 };
};
class FIR64AndDecimateBy2Real {
public:
static constexpr size_t taps_count = 64;
FIR64AndDecimateBy2Real(
const std::array<int16_t, taps_count>& taps
) : taps(taps)
2015-07-08 15:39:24 +00:00
{
}
buffer_s16_t execute(
buffer_s16_t src,
buffer_s16_t dst
);
private:
std::array<int16_t, taps_count + 2> z;
const std::array<int16_t, taps_count>& taps;
};
class FIRAndDecimateComplex {
2015-07-08 15:39:24 +00:00
public:
using sample_t = complex16_t;
using tap_t = complex16_t;
using taps_t = tap_t[];
2015-07-08 15:39:24 +00:00
/* NOTE! Current code makes an assumption that block of samples to be
* processed will be a multiple of the taps_count.
*/
FIRAndDecimateComplex(
const size_t taps_count,
const size_t decimation_factor
) : samples_ { std::make_unique<samples_t>(taps_count) },
taps_reversed_ { std::make_unique<taps_t>(taps_count) },
taps_count_ { taps_count },
decimation_factor_ { decimation_factor }
{
}
template<typename T>
FIRAndDecimateComplex(
const T& taps,
const size_t decimation_factor
) : FIRAndDecimateComplex(taps.size(), decimation_factor)
{
std::reverse_copy(taps.cbegin(), taps.cend(), &taps_reversed_[0]);
2015-07-08 15:39:24 +00:00
}
buffer_c16_t execute(
buffer_c16_t src,
buffer_c16_t dst
);
2015-07-08 15:39:24 +00:00
private:
using samples_t = sample_t[];
const std::unique_ptr<samples_t> samples_;
const std::unique_ptr<taps_t> taps_reversed_;
const size_t taps_count_;
const size_t decimation_factor_;
2015-07-08 15:39:24 +00:00
};
class DecimateBy2CIC4Real {
public:
buffer_s16_t execute(
buffer_s16_t src,
buffer_s16_t dst
);
private:
int16_t z[5];
};
#if 0
class DecimateBy2HBF5Complex {
public:
buffer_c16_t execute(
buffer_c16_t const src,
buffer_c16_t const dst
);
private:
complex16_t z[11];
};
class DecimateBy2HBF7Complex {
public:
buffer_c16_t execute(
buffer_c16_t const src,
buffer_c16_t const dst
);
private:
complex16_t z[11];
};
#endif
/* From http://www.dspguru.com/book/export/html/3
Here are several basic techniques to fake circular buffers:
Split the calculation: You can split any FIR calculation into its "pre-wrap"
and "post-wrap" parts. By splitting the calculation into these two parts, you
essentially can do the circular logic only once, rather than once per tap.
(See fir_double_z in FirAlgs.c above.)
Duplicate the delay line: For a FIR with N taps, use a delay line of size 2N.
Copy each sample to its proper location, as well as at location-plus-N.
Therefore, the FIR calculation's MAC loop can be done on a flat buffer of N
points, starting anywhere within the first set of N points. The second set of
N delayed samples provides the "wrap around" comparable to a true circular
buffer. (See fir_double_z in FirAlgs.c above.)
Duplicate the coefficients: This is similar to the above, except that the
duplication occurs in terms of the coefficients, not the delay line.
Compared to the previous method, this has a calculation advantage of not
having to store each incoming sample twice, and it also has a memory
advantage when the same coefficient set will be used on multiple delay lines.
(See fir_double_h in FirAlgs.c above.)
Use block processing: In block processing, you use a delay line which is a
multiple of the number of taps. You therefore only have to move the data
once per block to implement the delay-line mechanism. When the block size
becomes "large", the overhead of a moving the delay line once per block
becomes negligible.
*/
#if 0
template<size_t N>
class FIRAndDecimateBy2Complex {
public:
FIR64AndDecimateBy2Complex(
const std::array<int16_t, N>& taps
) : taps { taps }
{
}
buffer_c16_t execute(
buffer_c16_t const src,
buffer_c16_t const dst
) {
/* int16_t input (sample count "n" must be multiple of 4)
* -> int16_t output, decimated by 2.
* taps are normalized to 1 << 16 == 1.0.
*/
return { dst.p, src.count / 2 };
}
private:
std::array<complex16_t, N> z;
const std::array<int16_t, N>& taps;
complex<int16_t> process_one(const size_t start_offset) {
const auto split = &z[start_offset];
const auto end = &z[z.size()];
auto tap = &taps[0];
complex<int32_t> t { 0, 0 };
auto p = split;
while(p < end) {
const auto t = *(tap++);
const auto c = *(p++);
t.real += c.real * t;
t.imag += c.imag * t;
}
p = &z[0];
while(p < split) {
const auto t = *(tap++);
const auto c = *(p++);
t.real += c.real * t;
t.imag += c.imag * t;
}
return { t.real / 65536, t.imag / 65536 };
}
};
#endif
} /* namespace decimate */
} /* namespace dsp */
#endif/*__DSP_DECIMATE_H__*/