mayhem-firmware/firmware/baseband/proc_fsk_rx.cpp

319 lines
10 KiB
C++
Raw Normal View History

New and Improved BLE App. (#1524) * First BLE work * Adding new fsk proc WIP * Reverting ble stuff * Initial compile working * more work. * Adding waterfall for debug * more edits to debug * Work to get widgets to show. * cleanup before attempting diff fsk modulation method * Temporary debug to learn how decimation scales. * Tab view for console and spectrum. Spectrum still not working right. * Fixed spectrum offset. * Added audio sampling rate increments to freqman * Added overriding range for frequency field and working off deviation * BLE cleanup. Got PDU parsing. * Parsing CRC * forgot : * Removing AA again because cluttering UI * fix compile * attempt at throttling. * WIP changes. * Decimating by 4 to handle issue with overloading. * Attempt to parse MAC still needs work. * Small fixes. MAC still wrong. * Fixed invalid indexing on Symbols. * List view of BLE Mac Addresses * Added Channel Option and improved GUI header. * renaming to dB and fixing some warnings. * Advertisements only. * Initial cut of BLE Advertisement scan app. * Copyrights * formatting correctly in association to clang13 * Fixing warning and hiding fsk rx. * spacing * Removing some cmake install files that weren't suppose to be there. * missed some. * Added name to about. * Edits for PR review pt.1 * Refactor ORing with 0 doesn't make sense. * remove parenthesis * More PR Review changes. * Fix compiler error. * PR Review edits. * PR review changes. * Fixes. * Unneeded ; * Update ui_about_simple.cpp --------- Co-authored-by: jLynx <admin@jlynx.net>
2023-10-23 05:58:14 +00:00
/*
* Copyright (C) 1996 Thomas Sailer (sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu)
* Copyright (C) 2012-2014 Elias Oenal (multimon-ng@eliasoenal.com)
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
* Copyright (C) 2023 Kyle Reed
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_fsk_rx.hpp"
#include "event_m4.hpp"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstddef>
using namespace std;
using namespace dsp::decimate;
namespace {
/* Count of bits that differ between the two values. */
uint8_t diff_bit_count(uint32_t left, uint32_t right) {
uint32_t diff = left ^ right;
uint8_t count = 0;
for (size_t i = 0; i < sizeof(diff) * 8; ++i) {
if (((diff >> i) & 0x1) == 1)
++count;
}
return count;
}
} // namespace
/* AudioNormalizer ***************************************/
void AudioNormalizer::execute_in_place(const buffer_f32_t& audio) {
// Decay min/max every second (@24kHz).
if (counter_ >= 24'000) {
// 90% decay factor seems to work well.
// This keeps large transients from wrecking the filter.
max_ *= 0.9f;
min_ *= 0.9f;
counter_ = 0;
calculate_thresholds();
}
counter_ += audio.count;
for (size_t i = 0; i < audio.count; ++i) {
auto& val = audio.p[i];
if (val > max_) {
max_ = val;
calculate_thresholds();
}
if (val < min_) {
min_ = val;
calculate_thresholds();
}
if (val >= t_hi_)
val = 1.0f;
else if (val <= t_lo_)
val = -1.0f;
else
val = 0.0;
}
}
void AudioNormalizer::calculate_thresholds() {
auto center = (max_ + min_) / 2.0f;
auto range = (max_ - min_) / 2.0f;
// 10% off center force either +/-1.0f.
// Higher == larger dead zone.
// Lower == more false positives.
auto threshold = range * 0.1;
t_hi_ = center + threshold;
t_lo_ = center - threshold;
}
/* FSKRxProcessor ******************************************/
void FSKRxProcessor::clear_data_bits() {
data = 0;
bit_count = 0;
}
void FSKRxProcessor::handle_sync(bool inverted) {
clear_data_bits();
has_sync_ = true;
inverted = inverted;
word_count = 0;
}
void FSKRxProcessor::process_bits(const buffer_c8_t& buffer) {
// Process all of the bits in the bits queue.
while (buffer.count > 0) {
// Wait until data_ is full.
if (bit_count < data_bit_count)
continue;
// Wait for the sync frame.
if (!has_sync_) {
if (diff_bit_count(data, sync_codeword) <= 2)
handle_sync(/*inverted=*/false);
else if (diff_bit_count(data, ~sync_codeword) <= 2)
handle_sync(/*inverted=*/true);
continue;
}
}
}
/* FSKRxProcessor ***************************************/
FSKRxProcessor::FSKRxProcessor() {
}
void FSKRxProcessor::execute(const buffer_c8_t& buffer) {
if (!configured) {
return;
}
// Decimate by current decim 0 and decim 1.
const auto decim_0_out = decim_0.execute(buffer, dst_buffer);
const auto decim_1_out = decim_1.execute(decim_0_out, dst_buffer);
feed_channel_stats(decim_1_out);
spectrum_samples += decim_1_out.count;
if (spectrum_samples >= spectrum_interval_samples) {
spectrum_samples -= spectrum_interval_samples;
channel_spectrum.feed(decim_1_out, channel_filter_low_f,
channel_filter_high_f, channel_filter_transition);
}
// process_bits();
// Update the status.
samples_processed += buffer.count;
if (samples_processed >= stat_update_threshold) {
// send_packet(data);
samples_processed -= stat_update_threshold;
}
}
void FSKRxProcessor::on_message(const Message* const message) {
switch (message->id) {
case Message::ID::FSKRxConfigure:
configure(*reinterpret_cast<const FSKRxConfigureMessage*>(message));
break;
case Message::ID::UpdateSpectrum:
case Message::ID::SpectrumStreamingConfig:
channel_spectrum.on_message(message);
break;
case Message::ID::SampleRateConfig:
sample_rate_config(*reinterpret_cast<const SampleRateConfigMessage*>(message));
break;
case Message::ID::CaptureConfig:
capture_config(*reinterpret_cast<const CaptureConfigMessage*>(message));
break;
default:
break;
}
}
void FSKRxProcessor::configure(const FSKRxConfigureMessage& message) {
// Extract message variables.
deviation = message.deviation;
channel_decimation = message.channel_decimation;
// channel_filter_taps = message.channel_filter;
channel_spectrum.set_decimation_factor(1);
}
void FSKRxProcessor::capture_config(const CaptureConfigMessage& message) {
if (message.config) {
audio_output.set_stream(std::make_unique<StreamInput>(message.config));
} else {
audio_output.set_stream(nullptr);
}
}
void FSKRxProcessor::sample_rate_config(const SampleRateConfigMessage& message) {
const auto sample_rate = message.sample_rate;
// The actual sample rate is the requested rate * the oversample rate.
// See oversample.hpp for more details on oversampling.
baseband_fs = sample_rate * toUType(message.oversample_rate);
baseband_thread.set_sampling_rate(baseband_fs);
// TODO: Do we need to use the taps that the decimators get configured with?
channel_filter_low_f = taps_200k_decim_1.low_frequency_normalized * sample_rate;
channel_filter_high_f = taps_200k_decim_1.high_frequency_normalized * sample_rate;
channel_filter_transition = taps_200k_decim_1.transition_normalized * sample_rate;
// Compute the scalar that corrects the oversample_rate to be x8 when computing
// the spectrum update interval. The original implementation only supported x8.
// TODO: Why is this needed here but not in proc_replay? There must be some other
// assumption about x8 oversampling in some component that makes this necessary.
const auto oversample_correction = toUType(message.oversample_rate) / 8.0;
// The spectrum update interval controls how often the waterfall is fed new samples.
spectrum_interval_samples = sample_rate / (spectrum_rate_hz * oversample_correction);
spectrum_samples = 0;
// For high sample rates, the M4 is busy collecting samples so the
// waterfall runs slower. Reduce the update interval so it runs faster.
// NB: Trade off: looks nicer, but more frequent updates == more CPU.
if (sample_rate >= 1'500'000)
spectrum_interval_samples /= (sample_rate / 750'000);
switch (message.oversample_rate) {
case OversampleRate::x4:
// M4 can't handle 2 decimation passes for sample rates needing x4.
decim_0.set<FIRC8xR16x24FS4Decim4>().configure(taps_200k_decim_0.taps);
decim_1.set<NoopDecim>();
break;
case OversampleRate::x8:
// M4 can't handle 2 decimation passes for sample rates <= 600k.
if (message.sample_rate < 600'000) {
decim_0.set<FIRC8xR16x24FS4Decim4>().configure(taps_200k_decim_0.taps);
decim_1.set<FIRC16xR16x16Decim2>().configure(taps_200k_decim_1.taps);
} else {
// Using 180k taps to provide better filtering with a single pass.
decim_0.set<FIRC8xR16x24FS4Decim8>().configure(taps_180k_wfm_decim_0.taps);
decim_1.set<NoopDecim>();
}
break;
case OversampleRate::x16:
decim_0.set<FIRC8xR16x24FS4Decim8>().configure(taps_200k_decim_0.taps);
decim_1.set<FIRC16xR16x16Decim2>().configure(taps_200k_decim_1.taps);
break;
case OversampleRate::x32:
decim_0.set<FIRC8xR16x24FS4Decim4>().configure(taps_200k_decim_0.taps);
decim_1.set<FIRC16xR16x32Decim8>().configure(taps_16k0_decim_1.taps);
break;
case OversampleRate::x64:
decim_0.set<FIRC8xR16x24FS4Decim8>().configure(taps_200k_decim_0.taps);
decim_1.set<FIRC16xR16x32Decim8>().configure(taps_16k0_decim_1.taps);
break;
default:
chDbgPanic("Unhandled OversampleRate");
break;
}
// Update demodulator based on new decimation. Todo: Confirm this works.
size_t decim_0_input_fs = baseband_fs;
size_t decim_0_output_fs = decim_0_input_fs / decim_0.decimation_factor();
size_t decim_1_input_fs = decim_0_output_fs;
size_t decim_1_output_fs = decim_1_input_fs / decim_1.decimation_factor();
// size_t channel_filter_input_fs = decim_1_output_fs;
// size_t channel_filter_output_fs = channel_filter_input_fs / channel_decimation;
size_t demod_input_fs = decim_1_output_fs;
send_packet((uint32_t)demod_input_fs);
// Set ready to process data.
configured = true;
}
void FSKRxProcessor::flush() {
// word_extractor.flush();
}
void FSKRxProcessor::reset() {
clear_data_bits();
has_sync_ = false;
inverted = false;
word_count = 0;
samples_processed = 0;
}
void FSKRxProcessor::send_packet(uint32_t data) {
data_message.is_data = true;
data_message.value = data;
shared_memory.application_queue.push(data_message);
}
/* main **************************************************/
int main() {
EventDispatcher event_dispatcher{std::make_unique<FSKRxProcessor>()};
event_dispatcher.run();
return 0;
}