mayhem-firmware/firmware/common/sonde_packet.cpp

462 lines
14 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2017 Furrtek
2023-05-03 05:37:31 +02:00
* Early 2023 joyel24 added meteomodem M20 support
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "sonde_packet.hpp"
#include "string_format.hpp"
#include <cstring>
//#include <complex>
namespace sonde {
static uint8_t calibytes[51*16]; //need these vars to survive
static uint8_t calfrchk[51]; //so subframes are preserved while populated
//Defines for Vaisala RS41, from https://github.com/rs1729/RS/blob/master/rs41/rs41sg.c
#define MASK_LEN 64
//Following values include the 4 bytes less shift, consumed in detecting the header on proc_sonde
#define block_status 0x35 //0x039 // 40 bytes
#define block_gpspos 0x10E //0x112 // 21 bytes
#define block_meas 0x61 //0x65 // 42 bytes
#define pos_FrameNb 0x37 //0x03B // 2 byte
#define pos_SondeID 0x39 //0x03D // 8 byte
#define pos_Voltage 0x041 //0x045 // 3 bytes (but first one is the important one) voltage x 10 ie: 26 = 2.6v
#define pos_CalData 0x04E //0x052 // 1 byte, counter 0x00..0x32
#define pos_temp 0x063 //0x067 // 3 bytes (uint24_t)
#define pos_GPSecefX 0x110 //0x114 // 4 byte
#define pos_GPSecefY 0x114 //0x118 // 4 byte (not actually used since Y and Z are following X, and grabbed in that same loop)
#define pos_GPSecefZ 0x118 //0x11C // 4 byte (same as Y)
#define PI 3.1415926535897932384626433832795 //3.1416 //(3.1415926535897932384626433832795)
Packet::Packet(
const baseband::Packet& packet,
const Type type
) : packet_ { packet },
decoder_ { packet_ },
reader_bi_m { decoder_ },
type_ { type }
{
if (type_ == Type::Meteomodem_unknown) {
// Right now we're just sure that the sync is from a Meteomodem sonde, differentiate between models now
const uint32_t id_byte = reader_bi_m.read(0 * 8, 16);
if (id_byte == 0x649F)
type_ = Type::Meteomodem_M10;
else if (id_byte == 0x648F)
type_ = Type::Meteomodem_M2K2;
else if (id_byte == 0x4520) //https://raw.githubusercontent.com/projecthorus/radiosonde_auto_rx/master/demod/mod/m20mod.c
type_ = Type::Meteomodem_M20;
}
}
size_t Packet::length() const {
return decoder_.symbols_count();
}
Timestamp Packet::received_at() const {
return packet_.timestamp();
}
Packet::Type Packet::type() const {
return type_;
}
//euquiq here:
//RS41SG 320 bits header, 320bytes frame (or more if it is an "extended frame")
//The raw data is xor-scrambled with the values in the 64 bytes vaisala_mask (see.hpp)
//from 0x008 to 0x037 (48 bytes reed-solomon error correction data)
uint8_t Packet::vaisala_descramble(const uint32_t pos) const
{ //vaisala_descramble(const uint32_t pos) const {
// packet_[i]; its a bit; packet_.size the total (should be 2560 bits)
uint8_t value = 0;
for (uint8_t i = 0; i < 8; i++)
value = (value << 1) | packet_[(pos * 8) + (7 - i)]; //get the byte from the bits collection
//packetReader reader { packet_ }; //This works just as above.
//value = reader.read(pos * 8,8);
//shift pos because first 4 bytes are consumed by proc_sonde in finding the vaisala signature
uint32_t mask_pos = pos + 4;
value = value ^ vaisala_mask[mask_pos % MASK_LEN]; //descramble with the xor pseudorandom table
return value;
};
GPS_data Packet::get_GPS_data() const
{
GPS_data result;
if ((type_ == Type::Meteomodem_M10) || (type_ == Type::Meteomodem_M2K2))
{
result.alt = (reader_bi_m.read(22 * 8, 32) / 1000) - 48;
result.lat = reader_bi_m.read(14 * 8, 32) / ((1ULL << 32) / 360.0);
result.lon = reader_bi_m.read(18 * 8, 32) / ((1ULL << 32) / 360.0);
}
else if (type_ == Type::Meteomodem_M20)
{
2023-05-03 05:37:31 +02:00
result.alt = reader_bi_m.read(8 * 8, 24) / 100.0 ; // <|
result.lat = reader_bi_m.read(28 * 8, 32) / 1000000.0 ; // <| Inspired by https://raw.githubusercontent.com/projecthorus/radiosonde_auto_rx/master/demod/mod/m20mod.c
result.lon = reader_bi_m.read(32 * 8, 32) / 1000000.0 ; // <|
}
else if (type_ == Type::Vaisala_RS41_SG)
{
uint8_t XYZ_bytes[4];
int32_t XYZ; // 32bit
double_t X[3];
for (int32_t k = 0; k < 3; k++)
{ //Get X,Y,Z ECEF position from GPS
for (int32_t i = 0; i < 4; i++) //each one is 4 bytes (32 bits)
XYZ_bytes[i] = vaisala_descramble(pos_GPSecefX + (4 * k) + i);
memcpy(&XYZ, XYZ_bytes, 4);
X[k] = XYZ / 100.0;
}
double_t a = 6378137.0;
double_t b = 6356752.31424518;
double_t e = sqrt((a * a - b * b) / (a * a));
double_t ee = sqrt((a * a - b * b) / (b * b));
double_t lam = atan2(X[1], X[0]);
double_t p = sqrt(X[0] * X[0] + X[1] * X[1]);
double_t t = atan2(X[2] * a, p * b);
double_t phi = atan2(X[2] + ee * ee * b * sin(t) * sin(t) * sin(t),
p - e * e * a * cos(t) * cos(t) * cos(t));
double_t R = a / sqrt(1 - e * e * sin(phi) * sin(phi));
result.alt = p / cos(phi) - R;
result.lat = phi * 180 / PI;
result.lon = lam * 180 / PI;
}
return result;
}
uint32_t Packet::battery_voltage() const
{
if (type_ == Type::Meteomodem_M10)
return (reader_bi_m.read(69 * 8, 8) + (reader_bi_m.read(70 * 8, 8) << 8)) * 1000 / 150;
else if (type_ == Type::Meteomodem_M20)
{
return 0; //NOT SUPPPORTED YET
}
else if (type_ == Type::Meteomodem_M2K2)
return reader_bi_m.read(69 * 8, 8) * 66; // Actually 65.8
else if (type_ == Type::Vaisala_RS41_SG)
{
uint32_t voltage = vaisala_descramble(pos_Voltage) * 100; //byte 69 = voltage * 10 (check if this value needs to be multiplied)
return voltage;
}
else
{
return 0; // Unknown
}
}
uint32_t Packet::frame() const
{
if (type_ == Type::Vaisala_RS41_SG)
{
uint32_t frame_number = vaisala_descramble(pos_FrameNb) | (vaisala_descramble(pos_FrameNb + 1) << 8);
return frame_number;
}
else
{
return 0; // Unknown
}
}
temp_humid Packet::get_temp_humid() const
{
temp_humid result;
result.humid = 0;
result.temp = 0;
if ( type_ == Type::Vaisala_RS41_SG && crc_ok_RS41() ) //Only process if packet is healthy
{
//memset(calfrchk, 0, 51); // is this necessary ? only if the sondeID changes (new sonde)
//original code from https://github.com/rs1729/RS/blob/master/rs41/rs41ptu.c
float Rf1, // ref-resistor f1 (750 Ohm)
Rf2, // ref-resistor f2 (1100 Ohm)
co1[3], // { -243.911 , 0.187654 , 8.2e-06 }
calT1[3], // calibration T1
co2[3], // { -243.911 , 0.187654 , 8.2e-06 }
calT2[3], // calibration T2-Hum
calH[2]; // calibration Hum
uint32_t meas[12], i;
//-------------- get_CalData
//-------------- populate calibytes (from getFrameConf)
uint8_t calfr = vaisala_descramble(pos_CalData); //get subframe #slot
for (i = 0; i < 16; i++) //Load subrfame calibration page (16 bytes) into #slot
calibytes[calfr * 16 + i] = vaisala_descramble(pos_CalData + 1 + i); //pos = pos_CalData + 1 + i ; vaisala_descramble(pos)
calfrchk[calfr] = 1; //flag this #slot as populated
memcpy(&Rf1, calibytes + 61, 4); // 0x03*0x10+13
memcpy(&Rf2, calibytes + 65, 4); // 0x04*0x10+ 1
memcpy(co1 + 0, calibytes + 77, 4); // 0x04*0x10+13
memcpy(co1 + 1, calibytes + 81, 4); // 0x05*0x10+ 1
memcpy(co1 + 2, calibytes + 85, 4); // 0x05*0x10+ 5
memcpy(calT1 + 0, calibytes + 89, 4); // 0x05*0x10+ 9
memcpy(calT1 + 1, calibytes + 93, 4); // 0x05*0x10+13
memcpy(calT1 + 2, calibytes + 97, 4); // 0x06*0x10+ 1
memcpy(calH + 0, calibytes + 117, 4); // 0x07*0x10+ 5
memcpy(calH + 1, calibytes + 121, 4); // 0x07*0x10+ 9
memcpy(co2 + 0, calibytes + 293, 4); // 0x12*0x10+ 5
memcpy(co2 + 1, calibytes + 297, 4); // 0x12*0x10+ 9
memcpy(co2 + 2, calibytes + 301, 4); // 0x12*0x10+13
memcpy(calT2 + 0, calibytes + 305, 4); // 0x13*0x10+ 1
memcpy(calT2 + 1, calibytes + 309, 4); // 0x13*0x10+ 5
memcpy(calT2 + 2, calibytes + 313, 4); // 0x13*0x10+ 9
//---------------------------------------
for (i = 0; i < 12; i++)
meas[i] = vaisala_descramble(pos_temp + (3 * i)) |
(vaisala_descramble(pos_temp + (3 * i) + 1) << 8) |
(vaisala_descramble(pos_temp + (3 * i) + 2) << 16);
//----Check if necessary calibytes are already present for calculation
if (calfrchk[0x03] && calfrchk[0x04] && calfrchk[0x04] && calfrchk[0x05] && calfrchk[0x05] && calfrchk[0x06]) //Calibites OK for Temperature
{
//----------get_Tc------------------------
float *p = co1;
float *c = calT1;
float g = (float)(meas[2] - meas[1]) / (Rf2 - Rf1), // gain
Rb = (meas[1] * Rf2 - meas[2] * Rf1) / (float)(meas[2] - meas[1]), // ofs
Rc = meas[0] / g - Rb,
R = Rc * c[0],
T = (p[0] + p[1] * R + p[2] * R * R + c[1]) * (1.0 + c[2]);
result.temp = T;
}
if (calfrchk[0x07])
{
//----------get_RH------------------------
float a0 = 7.5; // empirical
float a1 = 350.0 / calH[0]; // empirical
float fh = (meas[3] - meas[4]) / (float)(meas[5] - meas[4]);
float rh = 100.0 * (a1 * fh - a0);
float T0 = 0.0, T1 = -25.0; // T/C
rh += T0 - result.temp / 5.5; // empir. temperature compensation
if (result.temp < T1)
rh *= 1.0 + (T1 - result.temp) / 90.0; // empir. temperature compensation
if (rh < 0.0)
rh = 0.0;
if (rh > 100.0)
rh = 100.0;
if (result.temp < -273.0)
rh = -1.0;
result.humid = rh;
}
}
return result;
}
std::string Packet::type_string() const
{
switch (type_)
{
case Type::Unknown:
return "Unknown";
case Type::Meteomodem_unknown:
return "Meteomodem ???";
case Type::Meteomodem_M10:
return "Meteomodem M10";
case Type::Meteomodem_M20:
return "Meteomodem M20";
case Type::Meteomodem_M2K2:
return "Meteomodem M2K2";
case Type::Vaisala_RS41_SG:
return "Vaisala RS41-SG";
default:
return "? 0x" + symbols_formatted().data.substr(0, 6);
}
}
std::string Packet::serial_number() const
{
if (type_ == Type::Meteomodem_M10)
{
// See https://github.com/rs1729/RS/blob/master/m10/m10x.c line 606
// Starting at byte #93: 00000000 11111111 22222222 33333333 44444444
// CCCC AAAABBBB
// 44444444 33333333
// DDDEEEEE EEEEEEEE
return to_string_hex(reader_bi_m.read(93 * 8 + 16, 4), 1) +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 20, 4), 2, '0') + " " +
to_string_hex(reader_bi_m.read(93 * 8 + 4, 4), 1) + " " +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 24, 3), 1) +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 27, 13), 4, '0');
}
else if (type_ == Type::Vaisala_RS41_SG)
{
std::string serial_id = "";
uint8_t achar;
for (uint8_t i = 0; i < 8; i++)
{ //euquiq: Serial ID is 8 bytes long, each byte a char
achar = vaisala_descramble(pos_SondeID + i);
if (achar < 32 || achar > 126)
return "?"; //Maybe there are ids with less than 8 bytes and this is not OK.
serial_id += (char)achar;
}
return serial_id;
}
else
{
return "?";
}
}
FormattedSymbols Packet::symbols_formatted() const
{
if (type_ == Type::Vaisala_RS41_SG)
{ //Euquiq: now we distinguish different types
uint32_t bytes = packet_.size() / 8; //Need the byte amount, which if full, it SHOULD be 320 size() should return 2560
std::string hex_data;
std::string hex_error;
hex_data.reserve(bytes * 2); //2 hexa chars per byte
hex_error.reserve(1);
for (uint32_t i = 0; i < bytes; i++) //log will show the packet starting on the last 4 bytes from signature 93DF1A60
hex_data += to_string_hex(vaisala_descramble(i), 2);
return {hex_data, hex_error};
}
else
{
return format_symbols(decoder_);
}
}
bool Packet::crc_ok() const
{
switch (type_)
{
case Type::Meteomodem_M10:
return crc_ok_M10();
case Type::Vaisala_RS41_SG:
return crc_ok_RS41();
default:
return true; //euquiq: it was false, but if no crc routine, then no way to check
}
}
//each data block has a 2 byte header, data, and 2 byte tail:
// 1st byte: block ID
// 2nd byte: data length (without header or tail)
// <data>
// 2 bytes CRC16 over the data.
bool Packet::crc_ok_RS41() const //check CRC for the data blocks we need
{
if (!crc16rs41(block_status))
return false;
if (!crc16rs41(block_gpspos))
return false;
if (!crc16rs41(block_meas))
return false;
return true;
}
//Checks CRC16 on a RS41 field:
bool Packet::crc16rs41(uint32_t field_start) const
{
int crc16poly = 0x1021;
int rem = 0xFFFF, b, j;
int xbyte;
uint32_t pos = field_start + 1;
uint8_t length = vaisala_descramble(pos);
if (pos + length + 2 > packet_.size() / 8)
return false; //Out of packet!
for (b = 0; b < length; b++)
{
pos++;
xbyte = vaisala_descramble(pos);
rem = rem ^ (xbyte << 8);
for (j = 0; j < 8; j++)
{
if (rem & 0x8000)
{
rem = (rem << 1) ^ crc16poly;
}
else
{
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
//Check calculated CRC against packet's one
pos++;
int crcok = vaisala_descramble(pos) | (vaisala_descramble(pos + 1) << 8);
if (crcok != rem)
return false;
return true;
}
bool Packet::crc_ok_M10() const
{
uint16_t cs{0};
uint32_t c0, c1, t, t6, t7, s, b;
for (size_t i = 0; i < packet_.size(); i++)
{
b = packet_[i];
c1 = cs & 0xFF;
// B
b = (b >> 1) | ((b & 1) << 7);
b ^= (b >> 2) & 0xFF;
// A1
t6 = (cs & 1) ^ ((cs >> 2) & 1) ^ ((cs >> 4) & 1);
t7 = ((cs >> 1) & 1) ^ ((cs >> 3) & 1) ^ ((cs >> 5) & 1);
t = (cs & 0x3F) | (t6 << 6) | (t7 << 7);
// A2
s = (cs >> 7) & 0xFF;
s ^= (s >> 2) & 0xFF;
c0 = b ^ t ^ s;
cs = ((c1 << 8) | c0) & 0xFFFF;
}
return ((cs & 0xFFFF) == ((packet_[0x63] << 8) | (packet_[0x63 + 1])));
}
} /* namespace sonde */