mayhem-firmware/hackrf-portapack/portapack.c

641 lines
18 KiB
C
Raw Normal View History

/*
* Copyright 2018-2022 Great Scott Gadgets <info@greatscottgadgets.com>
* Copyright 2018 Jared Boone
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "portapack.h"
#include "hackrf_core.h"
#include "gpio_lpc.h"
#include <libopencm3/lpc43xx/scu.h>
static void portapack_sleep_milliseconds(const uint32_t milliseconds)
{
/* NOTE: Naively assumes 204 MHz instruction cycle clock and five instructions per count */
delay(milliseconds * 40800);
}
// clang-format off
static struct gpio_t gpio_io_stbx = GPIO(5, 0); /* P2_0 */
static struct gpio_t gpio_addr = GPIO(5, 1); /* P2_1 */
__attribute__((unused))
static struct gpio_t gpio_lcd_te = GPIO(5, 3); /* P2_3 */
__attribute__((unused))
static struct gpio_t gpio_unused = GPIO(5, 7); /* P2_8 */
static struct gpio_t gpio_lcd_rdx = GPIO(5, 4); /* P2_4 */
static struct gpio_t gpio_lcd_wrx = GPIO(1, 10); /* P2_9 */
static struct gpio_t gpio_dir = GPIO(1, 13); /* P2_13 */
// clang-format on
typedef struct portapack_if_t {
gpio_t gpio_dir;
gpio_t gpio_lcd_rdx;
gpio_t gpio_lcd_wrx;
gpio_t gpio_io_stbx;
gpio_t gpio_addr;
gpio_port_t* const gpio_port_data;
uint8_t io_reg;
} portapack_if_t;
static portapack_if_t portapack_if = {
.gpio_dir = &gpio_dir,
.gpio_lcd_rdx = &gpio_lcd_rdx,
.gpio_lcd_wrx = &gpio_lcd_wrx,
.gpio_io_stbx = &gpio_io_stbx,
.gpio_addr = &gpio_addr,
.gpio_port_data = GPIO_LPC_PORT(3),
.io_reg = 0x03,
};
/* NOTE: Code below assumes the shift value is "8". */
#define GPIO_DATA_SHIFT (8)
static const uint32_t gpio_data_mask = 0xFFU << GPIO_DATA_SHIFT;
static void portapack_data_mask_set()
{
portapack_if.gpio_port_data->mask = ~gpio_data_mask;
}
static void portapack_data_write_low(const uint32_t value)
{
portapack_if.gpio_port_data->mpin = (value << GPIO_DATA_SHIFT);
}
static void portapack_data_write_high(const uint32_t value)
{
/* NOTE: Assumes no other bits in the port are masked. */
/* NOTE: Assumes that bits 15 through 8 are masked. */
portapack_if.gpio_port_data->mpin = value;
}
static void portapack_dir_read()
{
portapack_if.gpio_port_data->dir &= ~gpio_data_mask;
gpio_set(portapack_if.gpio_dir);
}
static void portapack_dir_write()
{
gpio_clear(portapack_if.gpio_dir);
portapack_if.gpio_port_data->dir |= gpio_data_mask;
/* TODO: Manipulating DIR[3] makes me queasy. The RFFC5072 DATA pin
* is also on port 3, and switches direction periodically...
* Time to resort to bit-banding to enforce atomicity? But then, how
* to change direction on eight bits efficiently? Or do I care, since
* the PortaPack data bus shouldn't change direction too frequently?
*/
}
__attribute__((unused)) static void portapack_lcd_rd_assert()
{
gpio_clear(portapack_if.gpio_lcd_rdx);
}
static void portapack_lcd_rd_deassert()
{
gpio_set(portapack_if.gpio_lcd_rdx);
}
static void portapack_lcd_wr_assert()
{
gpio_clear(portapack_if.gpio_lcd_wrx);
}
static void portapack_lcd_wr_deassert()
{
gpio_set(portapack_if.gpio_lcd_wrx);
}
static void portapack_io_stb_assert()
{
gpio_clear(portapack_if.gpio_io_stbx);
}
static void portapack_io_stb_deassert()
{
gpio_set(portapack_if.gpio_io_stbx);
}
static void portapack_addr(const bool value)
{
gpio_write(portapack_if.gpio_addr, value);
}
static void portapack_lcd_command(const uint32_t value)
{
portapack_data_write_high(0); /* Drive high byte (with zero -- don't care) */
portapack_dir_write(); /* Turn around data bus, MCU->CPLD */
portapack_addr(0); /* Indicate command */
__asm__("nop");
__asm__("nop");
__asm__("nop");
portapack_lcd_wr_assert(); /* Latch high byte */
portapack_data_write_low(value); /* Drive low byte (pass-through) */
__asm__("nop");
__asm__("nop");
__asm__("nop");
portapack_lcd_wr_deassert(); /* Complete write operation */
portapack_addr(1); /* Set up for data phase (most likely after a command) */
}
static void portapack_lcd_write_data(const uint32_t value)
{
// NOTE: Assumes and DIR=0 and ADDR=1 from command phase.
portapack_data_write_high(value); /* Drive high byte */
__asm__("nop");
portapack_lcd_wr_assert(); /* Latch high byte */
portapack_data_write_low(value); /* Drive low byte (pass-through) */
__asm__("nop");
__asm__("nop");
__asm__("nop");
portapack_lcd_wr_deassert(); /* Complete write operation */
}
static void portapack_io_write(const bool address, const uint_fast16_t value)
{
portapack_data_write_low(value);
portapack_dir_write();
portapack_addr(address);
__asm__("nop");
__asm__("nop");
__asm__("nop");
portapack_io_stb_assert();
__asm__("nop");
__asm__("nop");
__asm__("nop");
portapack_io_stb_deassert();
}
static void portapack_if_init()
{
portapack_data_mask_set();
portapack_data_write_high(0);
portapack_dir_read();
portapack_lcd_rd_deassert();
portapack_lcd_wr_deassert();
portapack_io_stb_deassert();
portapack_addr(0);
gpio_output(portapack_if.gpio_dir);
gpio_output(portapack_if.gpio_lcd_rdx);
gpio_output(portapack_if.gpio_lcd_wrx);
gpio_output(portapack_if.gpio_io_stbx);
gpio_output(portapack_if.gpio_addr);
/* gpio_input(portapack_if.gpio_rot_a); */
/* gpio_input(portapack_if.gpio_rot_b); */
scu_pinmux(SCU_PINMUX_PP_D0, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN);
scu_pinmux(SCU_PINMUX_PP_D1, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN);
scu_pinmux(SCU_PINMUX_PP_D2, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN);
scu_pinmux(SCU_PINMUX_PP_D3, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN);
scu_pinmux(SCU_PINMUX_PP_D4, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN);
scu_pinmux(SCU_PINMUX_PP_D5, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN);
scu_pinmux(SCU_PINMUX_PP_D6, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN);
scu_pinmux(SCU_PINMUX_PP_D7, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN);
scu_pinmux(SCU_PINMUX_PP_DIR, SCU_CONF_FUNCTION0 | SCU_GPIO_NOPULL);
scu_pinmux(SCU_PINMUX_PP_LCD_RDX, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL);
scu_pinmux(SCU_PINMUX_PP_LCD_WRX, SCU_CONF_FUNCTION0 | SCU_GPIO_NOPULL);
scu_pinmux(SCU_PINMUX_PP_IO_STBX, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL);
scu_pinmux(SCU_PINMUX_PP_ADDR, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL);
/* scu_pinmux(SCU_PINMUX_PP_LCD_TE, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL); */
/* scu_pinmux(SCU_PINMUX_PP_UNUSED, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL); */
}
static void portapack_lcd_reset_state(const bool active)
{
portapack_if.io_reg = (portapack_if.io_reg & 0xfe) | (active ? (1 << 0) : 0);
portapack_io_write(1, portapack_if.io_reg);
}
static void portapack_lcd_data_write_command_and_data(
const uint_fast8_t command,
const uint8_t* data,
const size_t data_count)
{
portapack_lcd_command(command);
for (size_t i = 0; i < data_count; i++) {
portapack_lcd_write_data(data[i]);
}
}
static void portapack_lcd_sleep_out()
{
const uint8_t cmd_11[] = {};
portapack_lcd_data_write_command_and_data(0x11, cmd_11, ARRAY_SIZEOF(cmd_11));
// "It will be necessary to wait 120msec after sending Sleep Out
// command (when in Sleep In Mode) before Sleep In command can be
// sent."
portapack_sleep_milliseconds(120);
}
static void portapack_lcd_display_on()
{
const uint8_t cmd_29[] = {};
portapack_lcd_data_write_command_and_data(0x29, cmd_29, ARRAY_SIZEOF(cmd_29));
}
static void portapack_lcd_ramwr_start()
{
const uint8_t cmd_2c[] = {};
portapack_lcd_data_write_command_and_data(0x2c, cmd_2c, ARRAY_SIZEOF(cmd_2c));
}
static void portapack_lcd_set(
const uint_fast8_t command,
const uint_fast16_t start,
const uint_fast16_t end)
{
const uint8_t data[] = {(start >> 8), (start & 0xff), (end >> 8), (end & 0xff)};
portapack_lcd_data_write_command_and_data(command, data, ARRAY_SIZEOF(data));
}
static void portapack_lcd_caset(
const uint_fast16_t start_column,
const uint_fast16_t end_column)
{
portapack_lcd_set(0x2a, start_column, end_column);
}
static void portapack_lcd_paset(
const uint_fast16_t start_page,
const uint_fast16_t end_page)
{
portapack_lcd_set(0x2b, start_page, end_page);
}
static void portapack_lcd_start_ram_write(const ui_rect_t rect)
{
portapack_lcd_caset(rect.point.x, rect.point.x + rect.size.width - 1);
portapack_lcd_paset(rect.point.y, rect.point.y + rect.size.height - 1);
portapack_lcd_ramwr_start();
}
static void portapack_lcd_write_pixel(const ui_color_t pixel)
{
portapack_lcd_write_data(pixel.v);
}
static void portapack_lcd_write_pixels_color(const ui_color_t c, size_t n)
{
while (n--) {
portapack_lcd_write_data(c.v);
}
}
static void portapack_lcd_wake()
{
portapack_lcd_sleep_out();
portapack_lcd_display_on();
}
static void portapack_lcd_reset()
{
portapack_lcd_reset_state(false);
portapack_sleep_milliseconds(1);
portapack_lcd_reset_state(true);
portapack_sleep_milliseconds(10);
portapack_lcd_reset_state(false);
portapack_sleep_milliseconds(120);
}
static void portapack_lcd_init()
{
// LCDs are configured for IM[2:0] = 001
// 8080-I system, 16-bit parallel bus
//
// 0x3a: DBI[2:0] = 101
// MDT[1:0] = XX (if not in 18-bit mode, right?)
// Power control B
// 0
// PCEQ=1, DRV_ena=0, Power control=3
const uint8_t cmd_cf[] = {0x00, 0xD9, 0x30};
portapack_lcd_data_write_command_and_data(0xCF, cmd_cf, ARRAY_SIZEOF(cmd_cf));
// Power on sequence control
const uint8_t cmd_ed[] = {0x64, 0x03, 0x12, 0x81};
portapack_lcd_data_write_command_and_data(0xED, cmd_ed, ARRAY_SIZEOF(cmd_ed));
// Driver timing control A
const uint8_t cmd_e8[] = {0x85, 0x10, 0x78};
portapack_lcd_data_write_command_and_data(0xE8, cmd_e8, ARRAY_SIZEOF(cmd_e8));
// Power control A
const uint8_t cmd_cb[] = {0x39, 0x2C, 0x00, 0x34, 0x02};
portapack_lcd_data_write_command_and_data(0xCB, cmd_cb, ARRAY_SIZEOF(cmd_cb));
// Pump ratio control
const uint8_t cmd_f7[] = {0x20};
portapack_lcd_data_write_command_and_data(0xF7, cmd_f7, ARRAY_SIZEOF(cmd_f7));
// Driver timing control B
const uint8_t cmd_ea[] = {0x00, 0x00};
portapack_lcd_data_write_command_and_data(0xEA, cmd_ea, ARRAY_SIZEOF(cmd_ea));
const uint8_t cmd_b1[] = {0x00, 0x1B};
portapack_lcd_data_write_command_and_data(0xB1, cmd_b1, ARRAY_SIZEOF(cmd_b1));
// Blanking Porch Control
// VFP = 0b0000010 = 2 (number of HSYNC of vertical front porch)
// VBP = 0b0000010 = 2 (number of HSYNC of vertical back porch)
// HFP = 0b0001010 = 10 (number of DOTCLOCK of horizontal front porch)
// HBP = 0b0010100 = 20 (number of DOTCLOCK of horizontal back porch)
const uint8_t cmd_b5[] = {0x02, 0x02, 0x0a, 0x14};
portapack_lcd_data_write_command_and_data(0xB5, cmd_b5, ARRAY_SIZEOF(cmd_b5));
// Display Function Control
// PT[1:0] = 0b10
// PTG[1:0] = 0b10
// ISC[3:0] = 0b0010 (scan cycle interval of gate driver: 5 frames)
// SM = 0 (gate driver pin arrangement in combination with GS)
// SS = 1 (source output scan direction S720 -> S1)
// GS = 0 (gate output scan direction G1 -> G320)
// REV = 1 (normally white)
// NL = 0b100111 (default)
// PCDIV = 0b000000 (default?)
const uint8_t cmd_b6[] = {0x0A, 0xA2, 0x27, 0x00};
portapack_lcd_data_write_command_and_data(0xB6, cmd_b6, ARRAY_SIZEOF(cmd_b6));
// Power Control 1
//VRH[5:0]
const uint8_t cmd_c0[] = {0x1B};
portapack_lcd_data_write_command_and_data(0xC0, cmd_c0, ARRAY_SIZEOF(cmd_c0));
// Power Control 2
//SAP[2:0];BT[3:0]
const uint8_t cmd_c1[] = {0x12};
portapack_lcd_data_write_command_and_data(0xC1, cmd_c1, ARRAY_SIZEOF(cmd_c1));
// VCOM Control 1
const uint8_t cmd_c5[] = {0x32, 0x3C};
portapack_lcd_data_write_command_and_data(0xC5, cmd_c5, ARRAY_SIZEOF(cmd_c5));
// VCOM Control 2
const uint8_t cmd_c7[] = {0x9B};
portapack_lcd_data_write_command_and_data(0xC7, cmd_c7, ARRAY_SIZEOF(cmd_c7));
// Memory Access Control
// Invert X and Y memory access order, so upper-left of
// screen is (0,0) when writing to display.
const uint8_t cmd_36[] = {
(1 << 7) | // MY=1
(1 << 6) | // MX=1
(0 << 5) | // MV=0
(1 << 4) | // ML=1: reverse vertical refresh to simplify scrolling logic
(1 << 3) // BGR=1: For Kingtech LCD, BGR filter.
};
portapack_lcd_data_write_command_and_data(0x36, cmd_36, ARRAY_SIZEOF(cmd_36));
// COLMOD: Pixel Format Set
// DPI=101 (16 bits/pixel), DBI=101 (16 bits/pixel)
const uint8_t cmd_3a[] = {0x55};
portapack_lcd_data_write_command_and_data(0x3A, cmd_3a, ARRAY_SIZEOF(cmd_3a));
//portapack_lcd_data_write_command_and_data(0xF6, { 0x01, 0x30 });
// WEMODE=1 (reset column and page number on overflow)
// MDT[1:0]
// EPF[1:0]=00 (use channel MSB for LSB)
// RIM=0 (If COLMOD[6:4]=101 (65k color), 16-bit RGB interface (1 transfer/pixel))
// RM=0 (system interface/VSYNC interface)
// DM[1:0]=00 (internal clock operation)
// ENDIAN=0 (doesn't matter with 16-bit interface)
const uint8_t cmd_f6[] = {0x01, 0x30, 0x00};
portapack_lcd_data_write_command_and_data(0xF6, cmd_f6, ARRAY_SIZEOF(cmd_f6));
// 3Gamma Function Disable
const uint8_t cmd_f2[] = {0x00};
portapack_lcd_data_write_command_and_data(0xF2, cmd_f2, ARRAY_SIZEOF(cmd_f2));
// Gamma curve selected
const uint8_t cmd_26[] = {0x01};
portapack_lcd_data_write_command_and_data(0x26, cmd_26, ARRAY_SIZEOF(cmd_26));
// Set Gamma
const uint8_t cmd_e0[] = {
0x0F,
0x1D,
0x19,
0x0E,
0x10,
0x07,
0x4C,
0x63,
0x3F,
0x03,
0x0D,
0x00,
0x26,
0x24,
0x04};
portapack_lcd_data_write_command_and_data(0xE0, cmd_e0, ARRAY_SIZEOF(cmd_e0));
// Set Gamma
const uint8_t cmd_e1[] = {
0x00,
0x1C,
0x1F,
0x02,
0x0F,
0x03,
0x35,
0x25,
0x47,
0x04,
0x0C,
0x0B,
0x29,
0x2F,
0x05};
portapack_lcd_data_write_command_and_data(0xE1, cmd_e1, ARRAY_SIZEOF(cmd_e1));
portapack_lcd_wake();
// Turn on Tearing Effect Line (TE) output signal.
const uint8_t cmd_35[] = {0b00000000};
portapack_lcd_data_write_command_and_data(0x35, cmd_35, ARRAY_SIZEOF(cmd_35));
}
void portapack_backlight(const bool on)
{
portapack_if.io_reg = (portapack_if.io_reg & 0x7f) | (on ? (1 << 7) : 0);
portapack_io_write(1, portapack_if.io_reg);
}
void portapack_reference_oscillator(const bool on)
{
const uint8_t mask = 1 << 6;
portapack_if.io_reg = (portapack_if.io_reg & ~mask) | (on ? mask : 0);
portapack_io_write(1, portapack_if.io_reg);
}
void portapack_fill_rectangle(const ui_rect_t rect, const ui_color_t color)
{
portapack_lcd_start_ram_write(rect);
portapack_lcd_write_pixels_color(color, rect.size.width * rect.size.height);
}
void portapack_clear_display(const ui_color_t color)
{
const ui_rect_t rect_screen = {{0, 0}, {240, 320}};
portapack_fill_rectangle(rect_screen, color);
}
void portapack_draw_bitmap(
const ui_point_t point,
const ui_bitmap_t bitmap,
const ui_color_t foreground,
const ui_color_t background)
{
const ui_rect_t rect = {.point = point, .size = bitmap.size};
portapack_lcd_start_ram_write(rect);
const size_t count = bitmap.size.width * bitmap.size.height;
for (size_t i = 0; i < count; i++) {
const uint8_t pixel = bitmap.data[i >> 3] & (1U << (i & 0x7));
portapack_lcd_write_pixel(pixel ? foreground : background);
}
}
ui_bitmap_t portapack_font_glyph(const ui_font_t* const font, const char c)
{
if (c >= font->c_start) {
const uint_fast8_t index = c - font->c_start;
if (index < font->c_count) {
const ui_bitmap_t bitmap = {
.size = font->glyph_size,
.data = &font->data[index * font->data_stride]};
return bitmap;
}
}
const ui_bitmap_t bitmap = {
.size = font->glyph_size,
.data = font->data,
};
return bitmap;
}
static bool jtag_pp_tck(const bool tms_value)
{
gpio_write(jtag_cpld.gpio->gpio_pp_tms, tms_value);
// 8 ns TMS/TDI to TCK setup
__asm__("nop");
__asm__("nop");
__asm__("nop");
gpio_set(jtag_cpld.gpio->gpio_tck);
// 15 ns TCK to TMS/TDI hold time
// 20 ns TCK high time
__asm__("nop");
__asm__("nop");
__asm__("nop");
__asm__("nop");
__asm__("nop");
gpio_clear(jtag_cpld.gpio->gpio_tck);
// 20 ns TCK low time
// 25 ns TCK falling edge to TDO valid
__asm__("nop");
__asm__("nop");
__asm__("nop");
__asm__("nop");
__asm__("nop");
__asm__("nop");
__asm__("nop");
return gpio_read(jtag_cpld.gpio->gpio_pp_tdo);
}
static uint32_t jtag_pp_shift(const uint32_t tms_bits, const size_t count)
{
uint32_t result = 0;
size_t bit_in_index = count - 1;
size_t bit_out_index = 0;
while (bit_out_index < count) {
const uint32_t tdo = jtag_pp_tck((tms_bits >> bit_in_index) & 1) & 1;
result |= (tdo << bit_out_index);
bit_in_index--;
bit_out_index++;
}
return result;
}
static uint32_t jtag_pp_idcode(void)
{
cpld_jtag_take(&jtag_cpld);
/* TODO: Check if PortaPack TMS is floating or driven by an external device. */
gpio_output(jtag_cpld.gpio->gpio_pp_tms);
/* Test-Logic/Reset -> Run-Test/Idle -> Select-DR/Scan -> Capture-DR */
jtag_pp_shift(0b11111010, 8);
/* Shift-DR */
const uint32_t idcode = jtag_pp_shift(0, 32);
/* Exit1-DR -> Update-DR -> Run-Test/Idle -> ... -> Test-Logic/Reset */
jtag_pp_shift(0b11011111, 8);
cpld_jtag_release(&jtag_cpld);
return idcode;
}
static bool portapack_detect(void)
{
const uint32_t idcode = jtag_pp_idcode();
return idcode == 0x00025610 || idcode == 0x020A50DD;
}
static const portapack_t portapack_instance = {};
static const portapack_t* portapack_pointer = NULL;
const portapack_t* portapack(void)
{
return portapack_pointer;
}
void portapack_init(void)
{
if (portapack_detect()) {
portapack_if_init();
portapack_lcd_reset();
portapack_lcd_init();
portapack_pointer = &portapack_instance;
} else {
portapack_pointer = NULL;
}
}