134 lines
5.2 KiB
C++
Raw Normal View History

#ifndef __FPROTO_CAMEATOMO_H__
#define __FPROTO_CAMEATOMO_H__
#include "subghzdbase.hpp"
typedef enum : uint8_t {
CameAtomoDecoderStepReset = 0,
CameAtomoDecoderStepDecoderData,
} CameAtomoDecoderStep;
class FProtoSubGhzDCameAtomo : public FProtoSubGhzDBase {
public:
FProtoSubGhzDCameAtomo() {
sensorType = FPS_CAMEATOMO;
te_short = 600;
te_long = 1200;
te_delta = 250;
min_count_bit_for_found = 62;
}
void feed(bool level, uint32_t duration) {
ManchesterEvent event = ManchesterEventReset;
switch (parser_step) {
case CameAtomoDecoderStepReset:
if ((!level) && (DURATION_DIFF(duration, te_long * 60) < te_delta * 40)) {
// Found header CAME
parser_step = CameAtomoDecoderStepDecoderData;
decode_data = 0;
decode_count_bit = 1;
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventReset, &manchester_saved_state, NULL);
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventShortLow, &manchester_saved_state, NULL);
}
break;
case CameAtomoDecoderStepDecoderData:
if (!level) {
if (DURATION_DIFF(duration, te_short) < te_delta) {
event = ManchesterEventShortLow;
} else if (
DURATION_DIFF(duration, te_long) < te_delta) {
event = ManchesterEventLongLow;
} else if (
duration >= ((uint32_t)te_long * 2 + te_delta)) {
if (decode_count_bit ==
min_count_bit_for_found) {
data = decode_data;
data_count_bit = decode_count_bit;
// controller
data ^= 0xFFFFFFFFFFFFFFFF;
data <<= 4;
uint8_t pack[8] = {};
pack[0] = (data >> 56);
pack[1] = ((data >> 48) & 0xFF);
pack[2] = ((data >> 40) & 0xFF);
pack[3] = ((data >> 32) & 0xFF);
pack[4] = ((data >> 24) & 0xFF);
pack[5] = ((data >> 16) & 0xFF);
pack[6] = ((data >> 8) & 0xFF);
pack[7] = (data & 0xFF);
atomo_decrypt(pack);
cnt = (uint16_t)pack[1] << 8 | pack[2];
serial = (uint32_t)(pack[3]) << 24 | pack[4] << 16 | pack[5] << 8 | pack[6];
uint8_t btn_decode = (pack[7] >> 4);
if (btn_decode == 0x0) {
btn = 0x1;
} else if (btn_decode == 0x2) {
btn = 0x2;
} else if (btn_decode == 0x4) {
btn = 0x3;
} else if (btn_decode == 0x6) {
btn = 0x4;
}
if (callback) callback(this);
}
decode_data = 0;
decode_count_bit = 1;
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventReset, &manchester_saved_state, NULL);
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventShortLow, &manchester_saved_state, NULL);
} else {
parser_step = CameAtomoDecoderStepReset;
}
} else {
if (DURATION_DIFF(duration, te_short) < te_delta) {
event = ManchesterEventShortHigh;
} else if (
DURATION_DIFF(duration, te_long) < te_delta) {
event = ManchesterEventLongHigh;
} else {
parser_step = CameAtomoDecoderStepReset;
}
}
if (event != ManchesterEventReset) {
bool bit;
bool data_ok = FProtoGeneral::manchester_advance(manchester_saved_state, event, &manchester_saved_state, &bit);
if (data_ok) {
decode_data = (decode_data << 1) | !bit;
decode_count_bit++;
}
}
break;
}
}
protected:
ManchesterState manchester_saved_state = ManchesterStateMid1;
void atomo_decrypt(uint8_t* buff) {
buff[0] = (buff[0] ^ 5) & 0x7F;
uint8_t tmpB = (-buff[0]) & 0x7F;
uint8_t bitCnt = 8;
while (bitCnt < 59) {
if ((tmpB & 0x18) && (((tmpB / 8) & 3) != 3)) {
tmpB = ((tmpB << 1) & 0xFF) | 1;
} else {
tmpB = (tmpB << 1) & 0xFF;
}
if (tmpB & 0x80) {
buff[bitCnt / 8] ^= (0x80 >> (bitCnt & 7));
}
bitCnt++;
}
}
};
#endif