mayhem-firmware/firmware/application/usb_serial_shell.cpp

1122 lines
34 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2023 Bernd Herzog
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "usb_serial_shell.hpp"
#include "event_m0.hpp"
#include "baseband_api.hpp"
#include "core_control.hpp"
#include "bitmap.hpp"
#include "png_writer.hpp"
#include "irq_controls.hpp"
#include "portapack.hpp"
#include "portapack_hal.hpp"
#include "hackrf_gpio.hpp"
#include "jtag_target_gpio.hpp"
#include "cpld_max5.hpp"
#include "portapack_cpld_data.hpp"
#include "crc.hpp"
#include "hackrf_cpld_data.hpp"
#include "usb_serial_io.h"
#include "ff.h"
#include "chprintf.h"
#include "chqueues.h"
#include "ui_external_items_menu_loader.hpp"
#include "untar.hpp"
#include "ui_widget.hpp"
#include "ui_navigation.hpp"
#include <string>
#include <codecvt>
#include <cstring>
#include <locale>
#include <libopencm3/lpc43xx/wwdt.h>
#define SHELL_WA_SIZE THD_WA_SIZE(1024 * 3)
#define palOutputPad(port, pad) (LPC_GPIO->DIR[(port)] |= 1 << (pad))
2024-01-03 13:06:29 +00:00
static EventDispatcher* _eventDispatcherInstance = NULL;
static EventDispatcher* getEventDispatcherInstance() {
return _eventDispatcherInstance;
}
// queue handler from ch
static msg_t qwait(GenericQueue* qp, systime_t time) {
if (TIME_IMMEDIATE == time)
return Q_TIMEOUT;
currp->p_u.wtobjp = qp;
queue_insert(currp, &qp->q_waiting);
return chSchGoSleepTimeoutS(THD_STATE_WTQUEUE, time);
}
// This function fills the output buffer, and sends all data in 1 packet
static size_t fillOBuffer(OutputQueue* oqp, const uint8_t* bp, size_t n) {
qnotify_t nfy = oqp->q_notify;
size_t w = 0;
chDbgCheck(n > 0, "chOQWriteTimeout");
chSysLock();
while (TRUE) {
while (chOQIsFullI(oqp)) {
if (qwait((GenericQueue*)oqp, TIME_INFINITE) != Q_OK) {
chSysUnlock();
return w;
}
}
while (!chOQIsFullI(oqp) && n > 0) {
oqp->q_counter--;
*oqp->q_wrptr++ = *bp++;
if (oqp->q_wrptr >= oqp->q_top)
oqp->q_wrptr = oqp->q_buffer;
w++;
--n;
}
if (nfy) nfy(oqp);
chSysUnlock(); /* Gives a preemption chance in a controlled point.*/
if (n == 0) return w;
chSysLock();
}
}
static void cmd_reboot(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)chp;
(void)argc;
(void)argv;
m4_request_shutdown();
chThdSleepMilliseconds(50);
LPC_RGU->RESET_CTRL[0] = (1 << 0);
}
static void cmd_dfu(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)chp;
(void)argc;
(void)argv;
m4_request_shutdown();
chThdSleepMilliseconds(50);
LPC_SCU->SFSP2_8 = (LPC_SCU->SFSP2_8 & ~(7)) | 4;
palOutputPad(5, 7);
palSetPad(5, 7);
LPC_RGU->RESET_CTRL[0] = (1 << 0);
}
static void cmd_hackrf(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)chp;
(void)argc;
(void)argv;
m4_request_shutdown();
chThdSleepMilliseconds(50);
EventDispatcher::request_stop();
}
static void cmd_sd_over_usb(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)chp;
(void)argc;
(void)argv;
ui::Painter painter;
painter.fill_rectangle(
{0, 0, portapack::display.width(), portapack::display.height()},
ui::Color::black());
painter.draw_bitmap(
{portapack::display.width() / 2 - 8, portapack::display.height() / 2 - 8},
ui::bitmap_icon_hackrf,
ui::Color::yellow(),
ui::Color::black());
sdcDisconnect(&SDCD1);
sdcStop(&SDCD1);
m4_request_shutdown();
chThdSleepMilliseconds(50);
portapack::shutdown(true);
m4_init(portapack::spi_flash::image_tag_usb_sd, portapack::memory::map::m4_code, false);
m0_halt();
}
std::filesystem::path path_from_string8(char* path) {
std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> conv;
return conv.from_bytes(path);
}
bool strEndsWith(const std::u16string& str, const std::u16string& suffix) {
if (str.length() >= suffix.length()) {
std::u16string endOfString = str.substr(str.length() - suffix.length());
return endOfString == suffix;
} else {
return false;
}
}
static void cmd_flash(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "Usage: flash /FIRMWARE/portapack-h1_h2-mayhem.bin\r\n");
return;
}
auto path = path_from_string8(argv[0]);
if (!std::filesystem::file_exists(path)) {
chprintf(chp, "file not found.\r\n");
return;
}
// check file extensions
if (strEndsWith(path.native(), u".ppfw.tar")) {
// extract tar
chprintf(chp, "Extracting TAR file.\r\n");
auto res = UnTar::untar(
path.native(), [chp](const std::string fileName) {
chprintf(chp, fileName.c_str());
chprintf(chp, "\r\n");
});
if (res.empty()) {
chprintf(chp, "error bad TAR file.\r\n");
return;
}
path = res; // it will contain the last bin file in tar
} else if (strEndsWith(path.native(), u".bin")) {
// nothing to do for this case yet.
} else {
chprintf(chp, "error only .bin or .ppfw.tar files canbe flashed.\r\n");
return;
}
chprintf(chp, "Flashing: ");
chprintf(chp, path.string().c_str());
chprintf(chp, "\r\n");
chThdSleepMilliseconds(50);
std::memcpy(&shared_memory.bb_data.data[0], path.native().c_str(), (path.native().length() + 1) * 2);
m4_request_shutdown();
chThdSleepMilliseconds(50);
m4_init(portapack::spi_flash::image_tag_flash_utility, portapack::memory::map::m4_code, false);
m0_halt();
}
static void cmd_screenshot(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)argc;
(void)argv;
ensure_directory("SCREENSHOTS");
auto path = next_filename_matching_pattern(u"SCREENSHOTS/SCR_????.PNG");
if (path.empty())
return;
PNGWriter png;
auto error = png.create(path);
if (error)
return;
for (int i = 0; i < ui::screen_height; i++) {
std::array<ui::ColorRGB888, ui::screen_width> row;
portapack::display.read_pixels({0, i, ui::screen_width, 1}, row);
png.write_scanline(row);
}
chprintf(chp, "generated %s\r\n", path.string().c_str());
}
// gives full color.
static void cmd_screenframe(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)argc;
(void)argv;
for (int i = 0; i < ui::screen_height; i++) {
std::array<ui::ColorRGB888, ui::screen_width> row;
portapack::display.read_pixels({0, i, ui::screen_width, 1}, row);
for (int px = 0; px < ui::screen_width; px += 5) {
char buffer[5 * 3 * 2];
sprintf(buffer, "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X", row[px].r, row[px].g, row[px].b, row[px + 1].r, row[px + 1].g, row[px + 1].b, row[px + 2].r, row[px + 2].g, row[px + 2].b, row[px + 3].r, row[px + 3].g, row[px + 3].b, row[px + 4].r, row[px + 4].g, row[px + 4].b);
fillOBuffer(&((SerialUSBDriver*)chp)->oqueue, (const uint8_t*)buffer, 5 * 3 * 2);
}
chprintf(chp, "\r\n");
}
chprintf(chp, "ok\r\n");
}
static char getChrFromRgb(uint8_t r, uint8_t g, uint8_t b) {
uint8_t chR = r >> 6; // 3bit
uint8_t chG = g >> 6; // 3bit
uint8_t chB = b >> 6; // 3bit
uint8_t res = chR << 4 | chG << 2 | chB;
res += 32;
return res;
}
// sends only 1 byte (printable only) per pixel, so around 96 colors
static void cmd_screenframeshort(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)argc;
(void)argv;
for (int y = 0; y < ui::screen_height; y++) {
std::array<ui::ColorRGB888, ui::screen_width> row;
portapack::display.read_pixels({0, y, ui::screen_width, 1}, row);
for (int px = 0; px < ui::screen_width; px += 60) {
char buffer[60];
for (int i = 0; i < 60; ++i) {
buffer[i] = getChrFromRgb(row[px + i].r, row[px + i].g, row[px + i].b);
}
fillOBuffer(&((SerialUSBDriver*)chp)->oqueue, (const uint8_t*)buffer, 60);
}
chprintf(chp, "\r\n");
}
chprintf(chp, "ok\r\n");
}
static void cmd_write_memory(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 2) {
chprintf(chp, "usage: write_memory <address> <value (1 or 4 bytes)>\r\n");
chprintf(chp, "example: write_memory 0x40004008 0x00000002\r\n");
return;
}
int value_length = strlen(argv[1]);
if (value_length != 10 && value_length != 4) {
chprintf(chp, "usage: write_memory <address> <value (1 or 4 bytes)>\r\n");
chprintf(chp, "example: write_memory 0x40004008 0x00000002\r\n");
return;
}
uint32_t address = (uint32_t)strtol(argv[0], NULL, 16);
uint32_t value = (uint32_t)strtol(argv[1], NULL, 16);
if (value_length == 10) {
uint32_t* data_pointer = (uint32_t*)address;
*data_pointer = value;
} else {
uint8_t* data_pointer = (uint8_t*)address;
*data_pointer = (uint8_t)value;
}
chprintf(chp, "ok\r\n");
}
static void cmd_read_memory(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: read_memory 0x40004008\r\n");
return;
}
int address = (int)strtol(argv[0], NULL, 16);
uint32_t* data_pointer = (uint32_t*)address;
chprintf(chp, "%x\r\n", *data_pointer);
}
static void cmd_button(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: button 1\r\n");
return;
}
int button = (int)strtol(argv[0], NULL, 10);
if (button < 1 || button > 8) {
chprintf(chp, "usage: button <number 1 to 8>\r\n");
return;
}
control::debug::inject_switch(button);
chprintf(chp, "ok\r\n");
}
2024-01-03 13:06:29 +00:00
static void cmd_touch(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 2) {
chprintf(chp, "usage: touch x y\r\n");
return;
}
int x = (int)strtol(argv[0], NULL, 10);
int y = (int)strtol(argv[1], NULL, 10);
if (x < 0 || x > ui::screen_width || y < 0 || y > ui::screen_height) {
chprintf(chp, "usage: touch x y\r\n");
return;
}
auto evtd = getEventDispatcherInstance();
if (evtd == NULL) {
chprintf(chp, "error\r\n");
}
evtd->emulateTouch({{x, y}, ui::TouchEvent::Type::Start});
evtd->emulateTouch({{x, y}, ui::TouchEvent::Type::End});
chprintf(chp, "ok\r\n");
}
// send ascii keys in 2 char hex representation. Can send multiple keys at once like: keyboard 414243 (this will be ABC)
static void cmd_keyboard(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: keyboard XX\r\n");
return;
}
auto evtd = getEventDispatcherInstance();
if (evtd == NULL) {
chprintf(chp, "error\r\n");
}
size_t data_string_len = strlen(argv[0]);
if (data_string_len % 2 != 0) {
chprintf(chp, "usage: keyboard XXXX\r\n");
return;
}
for (size_t i = 0; i < data_string_len; i++) {
char c = argv[0][i];
if ((c < '0' || c > '9') && (c < 'A' || c > 'F')) {
chprintf(chp, "usage: keyboard XX\r\n");
return;
}
}
char buffer[3] = {0, 0, 0};
for (size_t i = 0; i < data_string_len / 2; i++) {
buffer[0] = argv[0][i * 2];
buffer[1] = argv[0][i * 2 + 1];
uint8_t chr = (uint8_t)strtol(buffer, NULL, 16);
evtd->emulateKeyboard(chr);
}
chprintf(chp, "ok\r\n");
}
static void cmd_sd_list_dir(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: ls /\r\n");
return;
}
auto path = path_from_string8(argv[0]);
for (const auto& entry : std::filesystem::directory_iterator(path, "*")) {
if (std::filesystem::is_directory(entry.status())) {
chprintf(chp, "%s/\r\n", entry.path().string().c_str());
} else if (std::filesystem::is_regular_file(entry.status())) {
chprintf(chp, "%s\r\n", entry.path().string().c_str());
} else {
chprintf(chp, "%s *\r\n", entry.path().string().c_str());
}
}
}
static void cmd_sd_delete(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: rm <path>\r\n");
return;
}
auto path = path_from_string8(argv[0]);
if (!std::filesystem::file_exists(path)) {
chprintf(chp, "file not found.\r\n");
return;
}
delete_file(path);
chprintf(chp, "ok\r\n");
}
File* shell_file = nullptr;
static void cmd_sd_filesize(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: filesize <path>\r\n");
return;
}
auto path = path_from_string8(argv[0]);
FILINFO res;
auto stat = f_stat(path.tchar(), &res);
if (stat == FR_OK) {
chprintf(chp, "%lu\r\n", res.fsize);
chprintf(chp, "ok\r\n");
} else {
chprintf(chp, "error\r\n");
}
}
static void cmd_sd_open(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: open <path>\r\n");
return;
}
if (shell_file != nullptr) {
chprintf(chp, "file already open\r\n");
return;
}
auto path = path_from_string8(argv[0]);
shell_file = new File();
shell_file->open(path, false, true);
chprintf(chp, "ok\r\n");
}
static void cmd_sd_seek(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: seek <offset>\r\n");
return;
}
if (shell_file == nullptr) {
chprintf(chp, "no open file\r\n");
return;
}
int address = (int)strtol(argv[0], NULL, 10);
shell_file->seek(address);
chprintf(chp, "ok\r\n");
}
static void cmd_sd_close(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)argv;
if (argc != 0) {
chprintf(chp, "usage: close\r\n");
return;
}
if (shell_file == nullptr) {
chprintf(chp, "no open file\r\n");
return;
}
delete shell_file;
shell_file = nullptr;
chprintf(chp, "ok\r\n");
}
static void cmd_sd_read(BaseSequentialStream* chp, int argc, char* argv[]) {
if (argc != 1) {
chprintf(chp, "usage: read <number of bytes>\r\n");
return;
}
if (shell_file == nullptr) {
chprintf(chp, "no open file\r\n");
return;
}
int size = (int)strtol(argv[0], NULL, 10);
uint8_t buffer[62];
do {
File::Size bytes_to_read = size > 62 ? 62 : size;
auto bytes_read = shell_file->read(buffer, bytes_to_read);
if (bytes_read.is_error()) {
chprintf(chp, "error %d\r\n", bytes_read.error());
return;
}
std::string res = to_string_hex_array(buffer, bytes_read.value());
res += "\r\n";
fillOBuffer(&((SerialUSBDriver*)chp)->oqueue, (const uint8_t*)res.c_str(), res.size());
if (bytes_to_read != bytes_read.value())
return;
size -= bytes_to_read;
} while (size > 0);
chprintf(chp, "ok\r\n");
}
static void cmd_sd_write(BaseSequentialStream* chp, int argc, char* argv[]) {
const char* usage = "usage: write 0123456789ABCDEF\r\n";
if (argc != 1) {
chprintf(chp, usage);
return;
}
if (shell_file == nullptr) {
chprintf(chp, "no open file\r\n");
return;
}
size_t data_string_len = strlen(argv[0]);
if (data_string_len % 2 != 0) {
chprintf(chp, usage);
return;
}
for (size_t i = 0; i < data_string_len; i++) {
char c = argv[0][i];
if ((c < '0' || c > '9') && (c < 'A' || c > 'F')) {
chprintf(chp, usage);
return;
}
}
char buffer[3] = {0, 0, 0};
for (size_t i = 0; i < data_string_len / 2; i++) {
buffer[0] = argv[0][i * 2];
buffer[1] = argv[0][i * 2 + 1];
uint8_t value = (uint8_t)strtol(buffer, NULL, 16);
shell_file->write(&value, 1);
}
chprintf(chp, "ok\r\n");
}
static void cmd_rtcget(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)chp;
(void)argc;
(void)argv;
rtc::RTC datetime;
rtcGetTime(&RTCD1, &datetime);
chprintf(chp, "Current time: %04d-%02d-%02d %02d:%02d:%02d\r\n", datetime.year(), datetime.month(), datetime.day(), datetime.hour(), datetime.minute(), datetime.second());
}
static void cmd_rtcset(BaseSequentialStream* chp, int argc, char* argv[]) {
const char* usage =
"usage: rtcset [year] [month] [day] [hour] [minute] [second]\r\n"
" all fields are required; milliseconds zero when set\r\n"
" (fractional seconds are not supported)\r\n";
if (argc != 6) {
chprintf(chp, usage);
return;
}
rtc::RTC new_datetime{
(uint16_t)strtol(argv[0], NULL, 10), (uint8_t)strtol(argv[1], NULL, 10),
(uint8_t)strtol(argv[2], NULL, 10), (uint32_t)strtol(argv[3], NULL, 10),
(uint32_t)strtol(argv[4], NULL, 10), (uint32_t)strtol(argv[5], NULL, 10)};
rtcSetTime(&RTCD1, &new_datetime);
chprintf(chp, "ok\r\n");
}
static void cpld_info(BaseSequentialStream* chp, int argc, char* argv[]) {
const char* usage =
"usage: cpld_info <device>\r\n"
" supported modes:\r\n"
" cpld_info hackrf\r\n"
" cpld_info portapack\r\n";
if (argc != 1) {
chprintf(chp, usage);
return;
}
if (strncmp(argv[0], "hackrf", 5) == 0) {
jtag::GPIOTarget jtag_target_hackrf_cpld{
hackrf::one::gpio_cpld_tck,
hackrf::one::gpio_cpld_tms,
hackrf::one::gpio_cpld_tdi,
hackrf::one::gpio_cpld_tdo,
};
hackrf::one::cpld::CPLD hackrf_cpld{jtag_target_hackrf_cpld};
{
CRC<32> crc{0x04c11db7, 0xffffffff, 0xffffffff};
hackrf_cpld.prepare_read_eeprom();
for (const auto& block : hackrf::one::cpld::verify_blocks) {
auto from_device = hackrf_cpld.read_block_eeprom(block.id);
for (std::array<bool, 274UL>::reverse_iterator i = from_device.rbegin(); i != from_device.rend(); ++i) {
auto bit = *i;
crc.process_bit(bit);
}
}
hackrf_cpld.finalize_read_eeprom();
chprintf(chp, "CPLD eeprom firmware checksum: 0x%08X\r\n", crc.checksum());
}
{
CRC<32> crc{0x04c11db7, 0xffffffff, 0xffffffff};
hackrf_cpld.prepare_read_sram();
for (const auto& block : hackrf::one::cpld::verify_blocks) {
auto from_device = hackrf_cpld.read_block_sram(block);
for (std::array<bool, 274UL>::reverse_iterator i = from_device.rbegin(); i != from_device.rend(); ++i) {
auto bit = *i;
crc.process_bit(bit);
}
}
hackrf_cpld.finalize_read_sram(hackrf::one::cpld::verify_blocks[0].id);
chprintf(chp, "CPLD sram firmware checksum: 0x%08X\r\n", crc.checksum());
}
} else if (strncmp(argv[0], "portapack", 5) == 0) {
jtag::GPIOTarget target{
portapack::gpio_cpld_tck,
portapack::gpio_cpld_tms,
portapack::gpio_cpld_tdi,
portapack::gpio_cpld_tdo};
jtag::JTAG jtag{target};
portapack::cpld::CPLD cpld{jtag};
cpld.reset();
cpld.run_test_idle();
uint32_t idcode = cpld.get_idcode();
chprintf(chp, "CPLD IDCODE: 0x%08X\r\n", idcode);
if (idcode == 0x20A50DD) {
chprintf(chp, "CPLD Model: Altera MAX V 5M40Z\r\n");
cpld.reset();
cpld.run_test_idle();
cpld.sample();
cpld.bypass();
cpld.enable();
CRC<32> crc{0x04c11db7, 0xffffffff, 0xffffffff};
cpld.prepare_read(0x0000);
for (size_t i = 0; i < 3328; i++) {
uint16_t data = cpld.read();
crc.process_byte((data >> 0) & 0xff);
crc.process_byte((data >> 8) & 0xff);
crc.process_byte((data >> 16) & 0xff);
crc.process_byte((data >> 24) & 0xff);
}
cpld.prepare_read(0x0001);
for (size_t i = 0; i < 512; i++) {
uint16_t data = cpld.read();
crc.process_byte((data >> 0) & 0xff);
crc.process_byte((data >> 8) & 0xff);
crc.process_byte((data >> 16) & 0xff);
crc.process_byte((data >> 24) & 0xff);
}
chprintf(chp, "CPLD firmware checksum: 0x%08X\r\n", crc.checksum());
m4_request_shutdown();
chThdSleepMilliseconds(1000);
WWDT_MOD = WWDT_MOD_WDEN | WWDT_MOD_WDRESET;
WWDT_TC = 100000 & 0xFFFFFF;
WWDT_FEED_SEQUENCE;
} else if (idcode == 0x00025610) {
chprintf(chp, "CPLD Model: AGM AG256SL100\r\n");
if (cpld.AGM_enter_maintenance_mode() == false) {
return;
}
cpld.AGM_enter_read_mode();
CRC<32> crc{0x04c11db7, 0xffffffff, 0xffffffff};
for (size_t i = 0; i < 2048; i++) {
uint32_t data = cpld.AGM_read(i);
crc.process_byte((data >> 0) & 0xff);
crc.process_byte((data >> 8) & 0xff);
crc.process_byte((data >> 16) & 0xff);
crc.process_byte((data >> 24) & 0xff);
}
cpld.AGM_exit_maintenance_mode();
chprintf(chp, "CPLD firmware checksum: 0x%08X\r\n", crc.checksum());
m4_request_shutdown();
chThdSleepMilliseconds(1000);
WWDT_MOD = WWDT_MOD_WDEN | WWDT_MOD_WDRESET;
WWDT_TC = 100000 & 0xFFFFFF;
WWDT_FEED_SEQUENCE;
} else {
chprintf(chp, "CPLD Model: unknown\r\n");
}
} else {
chprintf(chp, usage);
}
}
// walks throught the given widget's childs in recurse to get all support text and pass it to a callback function
static void widget_collect_accessibility(BaseSequentialStream* chp, ui::Widget* w, void (*callback)(BaseSequentialStream*, const std::string&, const std::string&), ui::Widget* focusedWidget) {
for (auto child : w->children()) {
if (!child->hidden()) {
std::string res = "";
child->getAccessibilityText(res);
std::string strtype = "";
child->getWidgetName(strtype);
if (child == focusedWidget) strtype += "*";
if (callback != NULL && !res.empty()) callback(chp, res, strtype);
widget_collect_accessibility(chp, child, callback, focusedWidget);
}
}
}
// callback when it found any response from a widget
static void accessibility_callback(BaseSequentialStream* chp, const std::string& strResult, const std::string& wgType) {
if (!wgType.empty()) {
chprintf(chp, "[");
chprintf(chp, wgType.c_str());
chprintf(chp, "] ");
}
chprintf(chp, "%s\r\n", strResult.c_str());
}
// gets all widget's accessibility helper text
static void cmd_accessibility_readall(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)argc;
(void)argv;
auto evtd = getEventDispatcherInstance();
if (evtd == NULL) {
chprintf(chp, "error Can't get Event Dispatcherr\n");
return;
}
auto wg = evtd->getTopWidget();
if (wg == NULL) {
chprintf(chp, "error Can't get top Widget\r\n");
return;
}
auto focused = evtd->getFocusedWidget();
widget_collect_accessibility(chp, wg, accessibility_callback, focused);
chprintf(chp, "ok\r\n");
}
// gets focused widget's accessibility helper text
static void cmd_accessibility_readcurr(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)argc;
(void)argv;
auto evtd = getEventDispatcherInstance();
if (evtd == NULL) {
chprintf(chp, "error Can't get Event Dispatcher\r\n");
return;
}
auto wg = evtd->getFocusedWidget();
if (wg == NULL) {
chprintf(chp, "error Can't get focused Widget\r\n");
return;
}
std::string res = "";
wg->getAccessibilityText(res);
if (res.empty()) {
// try with parent
wg = wg->parent();
if (wg == NULL) {
chprintf(chp, "error Widget not providing accessibility info\r\n");
return;
}
wg->getAccessibilityText(res);
if (res.empty()) {
chprintf(chp, "error Widget not providing accessibility info\r\n");
return;
}
}
std::string strtype = "";
wg->getWidgetName(strtype);
accessibility_callback(chp, res, strtype);
chprintf(chp, "\r\nok\r\n");
}
static void cmd_appstart(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)argc;
(void)argv;
if (argc != 1) {
chprintf(chp, "Usage: appstart APPCALLNAME");
return;
}
auto evtd = getEventDispatcherInstance();
if (!evtd) return;
auto top_widget = evtd->getTopWidget();
if (!top_widget) return;
auto nav = static_cast<ui::SystemView*>(top_widget)->get_navigation_view();
if (!nav) return;
if (nav->StartAppByName(argv[0])) {
chprintf(chp, "ok\r\n");
return;
}
// since ext app loader changed, we can just pass the string to it, and it"ll return if started or not.
std::string appwithpath = "/APPS/";
appwithpath += argv[0];
appwithpath += ".ppma";
bool ret = ui::ExternalItemsMenuLoader::run_external_app(*nav, path_from_string8((char*)appwithpath.c_str()));
if (!ret) {
chprintf(chp, "error\r\n");
return;
}
chprintf(chp, "ok\r\n");
}
static void printAppInfo(BaseSequentialStream* chp, ui::AppInfoConsole& element) {
if (strlen(element.appCallName) == 0) return;
chprintf(chp, element.appCallName);
chprintf(chp, " ");
chprintf(chp, element.appFriendlyName);
chprintf(chp, " ");
switch (element.appLocation) {
case RX:
chprintf(chp, "[RX]\r\n");
break;
case TX:
chprintf(chp, "[TX]\r\n");
break;
case UTILITIES:
chprintf(chp, "[UTIL]\r\n");
break;
case DEBUG:
chprintf(chp, "[DEBUG]\r\n");
break;
default:
break;
}
}
// returns the installed apps, those can be called by appstart APPNAME
static void cmd_applist(BaseSequentialStream* chp, int argc, char* argv[]) {
(void)argc;
(void)argv;
auto evtd = getEventDispatcherInstance();
if (!evtd) return;
auto top_widget = evtd->getTopWidget();
if (!top_widget) return;
auto nav = static_cast<ui::SystemView*>(top_widget)->get_navigation_view();
if (!nav) return;
for (auto element : ui::NavigationView::fixedAppListFC) {
printAppInfo(chp, element);
}
ui::ExternalItemsMenuLoader::load_all_external_items_callback([chp](ui::AppInfoConsole& info) {
printAppInfo(chp, info);
});
chprintf(chp, "ok\r\n");
}
static void cmd_cpld_read(BaseSequentialStream* chp, int argc, char* argv[]) {
const char* usage =
"usage: cpld_read <device> <target>\r\n"
" device can be: hackrf, portapack\r\n"
" target can be: sram (hackrf only), eeprom\r\n";
if (argc != 2) {
chprintf(chp, usage);
return;
}
if (strncmp(argv[0], "hackrf", 5) == 0) {
if (strncmp(argv[1], "eeprom", 5) == 0) {
jtag::GPIOTarget jtag_target_hackrf_cpld{
hackrf::one::gpio_cpld_tck,
hackrf::one::gpio_cpld_tms,
hackrf::one::gpio_cpld_tdi,
hackrf::one::gpio_cpld_tdo,
};
hackrf::one::cpld::CPLD hackrf_cpld{jtag_target_hackrf_cpld};
hackrf_cpld.prepare_read_eeprom();
for (const auto& block : hackrf::one::cpld::verify_blocks) {
auto from_device = hackrf_cpld.read_block_eeprom(block.id);
chprintf(chp, "bank %04X: ", block.id);
uint32_t n = 6;
uint8_t byte = 0;
for (std::array<bool, 274UL>::reverse_iterator i = from_device.rbegin(); i != from_device.rend(); ++i) {
auto bit = *i;
byte |= bit << (7 - (n % 8));
if (n % 8 == 7) {
chprintf(chp, "%02X ", byte);
byte = 0;
}
n++;
}
chprintf(chp, "\r\n");
}
hackrf_cpld.finalize_read_eeprom();
}
else if (strncmp(argv[1], "sram", 5) == 0) {
jtag::GPIOTarget jtag_target_hackrf_cpld{
hackrf::one::gpio_cpld_tck,
hackrf::one::gpio_cpld_tms,
hackrf::one::gpio_cpld_tdi,
hackrf::one::gpio_cpld_tdo,
};
hackrf::one::cpld::CPLD hackrf_cpld{jtag_target_hackrf_cpld};
hackrf_cpld.prepare_read_sram();
for (const auto& block : hackrf::one::cpld::verify_blocks) {
auto from_device = hackrf_cpld.read_block_sram(block);
chprintf(chp, "bank %04X: ", block.id);
uint32_t n = 6;
uint8_t byte = 0;
for (std::array<bool, 274UL>::reverse_iterator i = from_device.rbegin(); i != from_device.rend(); ++i) {
auto bit = *i;
byte |= bit << (7 - (n % 8));
if (n % 8 == 7) {
chprintf(chp, "%02X ", byte);
byte = 0;
}
n++;
}
chprintf(chp, "\r\n");
}
hackrf_cpld.finalize_read_sram(hackrf::one::cpld::verify_blocks[0].id);
}
} else if (strncmp(argv[0], "portapack", 5) == 0) {
jtag::GPIOTarget target{
portapack::gpio_cpld_tck,
portapack::gpio_cpld_tms,
portapack::gpio_cpld_tdi,
portapack::gpio_cpld_tdo};
jtag::JTAG jtag{target};
portapack::cpld::CPLD cpld{jtag};
cpld.reset();
cpld.run_test_idle();
uint32_t idcode = cpld.get_idcode();
chprintf(chp, "CPLD IDCODE: 0x%08X\r\n", idcode);
if (idcode == 0x20A50DD) {
chprintf(chp, "CPLD Model: Altera MAX V 5M40Z\r\n");
cpld.reset();
cpld.run_test_idle();
cpld.sample();
cpld.bypass();
cpld.enable();
cpld.prepare_read(0x0000);
for (size_t i = 0; i < 3328; i++) {
uint16_t data = cpld.read();
chprintf(chp, "%d: 0x%04X\r\n", i, data);
}
cpld.prepare_read(0x0001);
for (size_t i = 0; i < 512; i++) {
uint16_t data = cpld.read();
chprintf(chp, "%d: 0x%04X\r\n", i, data);
}
m4_request_shutdown();
chThdSleepMilliseconds(1000);
WWDT_MOD = WWDT_MOD_WDEN | WWDT_MOD_WDRESET;
WWDT_TC = 100000 & 0xFFFFFF;
WWDT_FEED_SEQUENCE;
} else if (idcode == 0x00025610) {
chprintf(chp, "CPLD Model: AGM AG256SL100\r\n");
if (cpld.AGM_enter_maintenance_mode() == false) {
return;
}
cpld.AGM_enter_read_mode();
for (size_t i = 0; i < 2048; i++) {
uint32_t data = cpld.AGM_read(i);
if (i % 4 == 0)
chprintf(chp, "%5d: ", i * 4);
chprintf(chp, "0x%08X", data);
if (i % 4 == 3)
chprintf(chp, "\r\n");
else
chprintf(chp, " ");
}
cpld.AGM_exit_maintenance_mode();
m4_request_shutdown();
chThdSleepMilliseconds(1000);
WWDT_MOD = WWDT_MOD_WDEN | WWDT_MOD_WDRESET;
WWDT_TC = 100000 & 0xFFFFFF;
WWDT_FEED_SEQUENCE;
} else {
chprintf(chp, "CPLD Model: unknown\r\n");
}
} else {
chprintf(chp, usage);
}
}
static const ShellCommand commands[] = {
{"reboot", cmd_reboot},
{"dfu", cmd_dfu},
{"hackrf", cmd_hackrf},
{"sd_over_usb", cmd_sd_over_usb},
{"flash", cmd_flash},
{"screenshot", cmd_screenshot},
{"screenframe", cmd_screenframe},
{"screenframeshort", cmd_screenframeshort},
{"write_memory", cmd_write_memory},
{"read_memory", cmd_read_memory},
{"button", cmd_button},
2024-01-03 13:06:29 +00:00
{"touch", cmd_touch},
{"keyboard", cmd_keyboard},
{"ls", cmd_sd_list_dir},
{"rm", cmd_sd_delete},
{"open", cmd_sd_open},
{"seek", cmd_sd_seek},
{"close", cmd_sd_close},
{"read", cmd_sd_read},
{"write", cmd_sd_write},
{"filesize", cmd_sd_filesize},
{"rtcget", cmd_rtcget},
{"rtcset", cmd_rtcset},
{"cpld_info", cpld_info},
{"cpld_read", cmd_cpld_read},
{"accessibility_readall", cmd_accessibility_readall},
{"accessibility_readcurr", cmd_accessibility_readcurr},
{"applist", cmd_applist},
{"appstart", cmd_appstart},
{NULL, NULL}};
static const ShellConfig shell_cfg1 = {
(BaseSequentialStream*)&SUSBD1,
commands};
2024-01-03 13:06:29 +00:00
void create_shell(EventDispatcher* evtd) {
_eventDispatcherInstance = evtd;
shellCreate(&shell_cfg1, SHELL_WA_SIZE, NORMALPRIO + 10);
}