mayhem-firmware/firmware/baseband/dsp_modulate.cpp

265 lines
11 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2020 Belousov Oleg
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "dsp_modulate.hpp"
#include "sine_table_int8.hpp"
#include "portapack_shared_memory.hpp"
#include "tonesets.hpp"
namespace dsp {
namespace modulate {
Modulator::~Modulator() {
}
Mode Modulator::get_mode() {
return mode;
}
void Modulator::set_mode(Mode new_mode) {
mode = new_mode;
}
void Modulator::set_over(uint32_t new_over) {
over = new_over;
}
void Modulator::set_gain_shiftbits_vumeter_beep(float new_audio_gain, uint8_t new_audio_shift_bits_s16, bool new_play_beep) {
// new_audio_shift_bits_s16 are the direct shift bits (FM mod >>x) , and it is fixed to >>8_FM (AK) or 4,5,6, (WM boost OFF) or 6,7 (WM boost ON)
audio_gain = new_audio_gain;
audio_shift_bits_s16_FM = new_audio_shift_bits_s16; // FM : >>8(AK) fixed , >>4,5,6 (WM boost OFF)
if (new_audio_shift_bits_s16 == 8) { // FM : we are in AK codec IC => for AM-SSB-DSB we were using >>2 fixed (wm boost ON) .
audio_shift_bits_s16_AM_DSB_SSB = 2; // AM-DSB-SSB: >>2(AK) fixed , >>0,1,2 (WM boost OFF)
} else {
audio_shift_bits_s16_AM_DSB_SSB = (new_audio_shift_bits_s16 - 4); // AM-DSB-SSB: >>0,1,2 (WM boost OFF), >>2,3 (WM boost ON)
}
play_beep = new_play_beep;
}
int32_t Modulator::apply_beep(int32_t sample_in, bool& configured_in, uint32_t& new_beep_index, uint32_t& new_beep_timer, TXProgressMessage& new_txprogress_message) {
if (play_beep) { // We need to add audio beep sample.
if (new_beep_timer) {
new_beep_timer--;
} else {
new_beep_timer = baseband_fs * 0.05; // 50ms
if (new_beep_index == BEEP_TONES_NB) {
configured_in = false;
shared_memory.application_queue.push(new_txprogress_message);
} else {
beep_gen.configure(beep_deltas[new_beep_index], 1.0); // config sequentially the audio beep tone.
new_beep_index++;
}
}
sample_in = beep_gen.process(0); // Get sample of the selected sequence of 6 beep tones , and overwrite audio sample. Mix 0%.
}
return sample_in; // Return audio mic scaled with gain , 8 bit sample or audio beep sample.
}
///
SSB::SSB()
: hilbert() {
mode = Mode::LSB;
}
void SSB::set_fs_div_factor(float new_bw_ssb) {
switch ((int)new_bw_ssb / 1000) {
case 2:
2024-07-08 11:11:12 +02:00
fs_div_factor = 192; // TXBW_ssb = 2khz = BW_cut_off LPF = fs/4 ; BW_HT fs Hilbert Transform (4khz=fs/2) ==> (8k=fs) Hilbert_fs = 1.536.000/8000= 192
break;
case 3:
2024-07-08 11:11:12 +02:00
fs_div_factor = 128; // TXBW_ssb = 3khz = BW_cut_off LPF = fs/4 ; BW_HT fs Hilbert Transform (6khz=fs/2) ==> (12k=fs) Hilbert_fs = 1.536.000/12000= 128
break;
default:
2024-07-08 11:11:12 +02:00
fs_div_factor = 128; // TXBW_ssb = 3khz = BW_cut_off LPF = fs/4 ; BW_HT fs Hilbert Transform (6khz=fs/2) ==> (12k=fs) Hilbert_fs = 1.536.000/12000= 128
break;
}
}
void SSB::execute(const buffer_s16_t& audio, const buffer_c8_t& buffer, bool& configured_in, uint32_t& new_beep_index, uint32_t& new_beep_timer, TXProgressMessage& new_txprogress_message, AudioLevelReportMessage& new_level_message, uint32_t& new_power_acc_count, uint32_t& new_divider) {
// unused
(void)configured_in;
(void)new_beep_index;
(void)new_beep_timer;
(void)new_txprogress_message;
// No way to activate correctly the roger beep in this option, Maybe not enough M4 CPU power , Let's block roger beep in SSB selection by now .
int32_t sample = 0;
int8_t re = 0, im = 0;
for (size_t counter = 0; counter < buffer.count; counter++) {
if (counter % fs_div_factor == 0) { // Ex. TX bw_ssb 3khz =fs/4 Hilbert Transform sample rate, 128 = 1.536.000 hz / 12.000 hz (fs H.T.)
float i = 0.0, q = 0.0;
// over = 1.536.000/24khz = 64 . (Mic audio has fixed SR in audio_p buffer[] = 24khz), but in tx mode , we are running Transceiver fs @tx = 1.536.000 Hz.
sample = audio.p[counter / over] >> audio_shift_bits_s16_AM_DSB_SSB; // originally fixed >> 2, now >>2 for AK, 0,1,2,3 for WM (boost off)
sample *= audio_gain; // Apply GAIN Scale factor to the audio TX modulation.
// switch (mode) {
// case Mode::LSB:
hilbert.execute(sample / 32768.0f, i, q);
// case Mode::USB: hilbert.execute(sample / 32768.0f, q, i);
// default: break;
// }
i *= 256.0f; // Original 64.0f, now x 4 (+12 dB's SSB BB modulation)
q *= 256.0f; // Original 64.0f, now x 4 (+12 dB's SSB BB modulation)
switch (mode) {
case Mode::LSB:
re = q;
im = i;
break;
case Mode::USB:
re = i;
im = q;
break;
default:
re = 0;
im = 0;
break;
}
// re = q;
// im = i;
// break;
}
buffer.p[counter] = {re, im};
// Update vu-meter bar in the LCD screen.
power_acc += (sample < 0) ? -sample : sample; // Power average for UI vu-meter
if (new_power_acc_count) {
new_power_acc_count--;
} else { // power_acc_count = 0
new_power_acc_count = new_divider;
new_level_message.value = power_acc / (new_divider * 8); // Why ? . This division is to adj vu-meter sentitivity, to match saturation point to red-muter .
shared_memory.application_queue.push(new_level_message);
power_acc = 0;
}
}
}
///
FM::FM() {
mode = Mode::FM;
}
void FM::set_fm_delta(uint32_t new_delta) {
fm_delta = new_delta;
}
void FM::set_tone_gen_configure(const uint32_t set_delta, const float set_tone_mix_weight) {
tone_gen.configure(set_delta, set_tone_mix_weight);
}
void FM::execute(const buffer_s16_t& audio, const buffer_c8_t& buffer, bool& configured_in, uint32_t& new_beep_index, uint32_t& new_beep_timer, TXProgressMessage& new_txprogress_message, AudioLevelReportMessage& new_level_message, uint32_t& new_power_acc_count, uint32_t& new_divider) {
int32_t sample = 0;
int8_t re, im;
for (size_t counter = 0; counter < buffer.count; counter++) {
sample = audio.p[counter >> 6] >> audio_shift_bits_s16_FM; // Orig. >>8 , sample = audio.p[counter / over] >> 8; (not enough efficient running code, over = 1536000/240000= 64 )
sample *= audio_gain; // Apply GAIN Scale factor to the audio TX modulation.
if (play_beep) {
sample = apply_beep(sample, configured_in, new_beep_index, new_beep_timer, new_txprogress_message); // Apply beep -if selected - atom ,sample by sample.
} else {
// Update vu-meter bar in the LCD screen.
power_acc += (sample < 0) ? -sample : sample; // Power average for UI vu-meter
if (new_power_acc_count) {
new_power_acc_count--;
} else { // power_acc_count = 0
new_power_acc_count = new_divider;
new_level_message.value = power_acc / (new_divider / 4); // Why ? . This division is to adj vu-meter sentitivity, to match saturation point to red-muter .
shared_memory.application_queue.push(new_level_message);
power_acc = 0;
}
// TODO: pending to optimize CPU running code.
// So far , we can not handle all 3 issues at the same time (vu-meter , CTCSS, beep).
sample = tone_gen.process(sample); // Add selected Key_Tone or CTCSS subtone , atom function() , sample by sample.
}
delta = sample * fm_delta; // Modulate FM
phase += delta;
sphase = phase >> 24;
re = (sine_table_i8[(sphase + 64) & 255]);
im = (sine_table_i8[sphase]);
buffer.p[counter] = {re, im};
}
}
AM::AM() {
mode = Mode::AM;
}
void AM::execute(const buffer_s16_t& audio, const buffer_c8_t& buffer, bool& configured_in, uint32_t& new_beep_index, uint32_t& new_beep_timer, TXProgressMessage& new_txprogress_message, AudioLevelReportMessage& new_level_message, uint32_t& new_power_acc_count, uint32_t& new_divider) {
int32_t sample = 0;
int8_t re = 0, im = 0;
float q = 0.0;
for (size_t counter = 0; counter < buffer.count; counter++) {
if (counter % 128 == 0) {
sample = audio.p[counter / over] >> audio_shift_bits_s16_AM_DSB_SSB; // originally fixed >> 2, now >>2 for AK, 0,1,2,3 for WM (boost off)
sample *= audio_gain; // Apply GAIN Scale factor to the audio TX modulation.
}
if (play_beep) {
sample = apply_beep(sample, configured_in, new_beep_index, new_beep_timer, new_txprogress_message) << 5; // Apply beep -if selected - atom sample by sample.
} else {
// Update vu-meter bar in the LCD screen.
power_acc += (sample < 0) ? -sample : sample; // Power average for UI vu-meter
if (new_power_acc_count) {
new_power_acc_count--;
} else { // power_acc_count = 0
new_power_acc_count = new_divider;
new_level_message.value = power_acc / (new_divider * 8); // Why ?orig / (new_divider / 4); // Why ?
shared_memory.application_queue.push(new_level_message);
power_acc = 0;
}
}
q = sample / 32768.0f;
q *= 256.0f; // Original 64.0f,now x4 (+12 dB's BB_modulation in AM & DSB)
switch (mode) {
case Mode::AM:
re = q + 80;
im = q + 80;
break; // Original DC add +20_DC_level=carrier,now x4 (+12dB's AM carrier)
case Mode::DSB:
re = q;
im = q;
break;
default:
break;
}
buffer.p[counter] = {re, im};
}
}
} // namespace modulate
} // namespace dsp