diff --git a/firmware/application/apps/ui_looking_glass_app.cpp b/firmware/application/apps/ui_looking_glass_app.cpp index d28ec990..4a97414c 100644 --- a/firmware/application/apps/ui_looking_glass_app.cpp +++ b/firmware/application/apps/ui_looking_glass_app.cpp @@ -35,6 +35,49 @@ GlassView::~GlassView() { baseband::shutdown(); } +void GlassView::get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power) { + if (mode == LOOKING_GLASS_SINGLEPASS) { + // analog audio app like view + if (bin < 120) { + if (spectrum.db[SPEC_NB_BINS - 120 + bin] > max_power) + max_power = spectrum.db[SPEC_NB_BINS - 120 + bin]; + } else { + if (spectrum.db[bin - 120] > max_power) + max_power = spectrum.db[bin - 120]; + } + } else if (mode == LOOKING_GLASS_FASTSCAN) { + // view is made in multiple pass, use original bin picking + // Center 12 bins are ignored (DC spike is blanked) Leftmost and rightmost 2 bins are ignored + if (bin < 120) { + if (spectrum.db[SPEC_NB_BINS - 2 - 120 + bin] > max_power) + max_power = spectrum.db[SPEC_NB_BINS - 2 - 120 + bin]; + } else { + if (spectrum.db[2 + bin - 120] > max_power) + max_power = spectrum.db[2 + bin - 120]; + } + } else // if( mode == LOOKING_GLASS_SLOWSCAN ) + { + if (bin < 120) { + if (spectrum.db[SPEC_NB_BINS - offset - 120 + bin] > max_power) + max_power = spectrum.db[SPEC_NB_BINS - offset - 120 + bin]; + } else { + if (spectrum.db[offset + bin - 120] > max_power) + max_power = spectrum.db[offset + bin - 120]; + } + } +} + +void GlassView::on_marker_change() { + if (mode == LOOKING_GLASS_SINGLEPASS) { + marker = f_min + (marker_pixel_index * looking_glass_range) / SCREEN_W; + } else // if( mode == LOOKING_GLASS_SLOWSCAN || mode == LOOKING_GLASS_FASTSCAN ) + { + marker = f_min + (offset * each_bin_size) + (marker_pixel_index * looking_glass_range) / SCREEN_W; + } + button_marker.set_text(to_string_short_freq(marker)); + PlotMarker(marker_pixel_index); // Refresh marker on screen +} + // Returns the next multiple of num that is a multiple of multiplier int64_t GlassView::next_mult_of(int64_t num, int64_t multiplier) { return ((num / multiplier) + 1) * multiplier; @@ -52,6 +95,13 @@ void GlassView::adjust_range(int64_t* f_min, int64_t* f_max, int64_t width) { *f_max += delta_span; } +void GlassView::retune() { + // Start a new sweep + radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving + chThdSleepMilliseconds(5); + baseband::spectrum_streaming_start(); // Do the RX +} + void GlassView::on_lna_changed(int32_t v_db) { receiver_model.set_lna(v_db); } @@ -66,22 +116,20 @@ void GlassView::reset_live_view(bool clear_screen) { if (clear_screen) { // only clear screen in peak mode if (live_frequency_view == 2) { - display.fill_rectangle({{0, 108 + 16}, {240, 320 - (108 + 16)}}, {0, 0, 0}); + display.fill_rectangle({{0, 108 + 16}, {SCREEN_W, 320 - (108 + 16)}}, {0, 0, 0}); } } } void GlassView::add_spectrum_pixel(uint8_t power) { - static int64_t last_max_freq = 0; - spectrum_row[pixel_index] = spectrum_rgb3_lut[power]; // row of colors spectrum_data[pixel_index] = (live_frequency_integrate * spectrum_data[pixel_index] + power) / (live_frequency_integrate + 1); // smoothing pixel_index++; - if (pixel_index == 240) // got an entire waterfall line + if (pixel_index == SCREEN_W) // got an entire waterfall line { if (live_frequency_view > 0) { - constexpr int rssi_sample_range = 256; + constexpr int rssi_sample_range = SPEC_NB_BINS; constexpr float rssi_voltage_min = 0.4; constexpr float rssi_voltage_max = 2.2; constexpr float adc_voltage_max = 3.3; @@ -91,11 +139,11 @@ void GlassView::add_spectrum_pixel(uint8_t power) { const range_t y_max_range{0, 320 - (108 + 16)}; // drawing and keeping track of max freq - for (uint16_t xpos = 0; xpos < 240; xpos++) { + for (uint16_t xpos = 0; xpos < SCREEN_W; xpos++) { // save max powerwull freq if (spectrum_data[xpos] > max_freq_power) { max_freq_power = spectrum_data[xpos]; - max_freq_hold = f_min + ((f_max - f_min) * xpos) / 240; + max_freq_hold = f_center + ((looking_glass_range)*xpos) / SCREEN_W; } int16_t point = y_max_range.clip(((spectrum_data[xpos] - raw_min) * (320 - (108 + 16))) / raw_delta); @@ -110,117 +158,51 @@ void GlassView::add_spectrum_pixel(uint8_t power) { last_max_freq = max_freq_hold; freq_stats.set("MAX HOLD: " + to_string_short_freq(max_freq_hold)); } - PlotMarker(marker); + PlotMarker(marker_pixel_index); } else { - display.draw_pixels({{0, display.scroll(1)}, {240, 1}}, spectrum_row); // new line at top, one less var, speedier + display.draw_pixels({{0, display.scroll(1)}, {SCREEN_W, 1}}, spectrum_row); // new line at top, one less var, speedier } pixel_index = 0; // Start New cascade line } } -// Apparently, the spectrum object returns an array of 256 bins +// Apparently, the spectrum object returns an array of SPEC_NB_BINS (256) bins // Each having the radio signal power for it's corresponding frequency slot void GlassView::on_channel_spectrum(const ChannelSpectrum& spectrum) { - // default fast scan offset - uint8_t offset = 2; baseband::spectrum_streaming_stop(); - if (fast_scan || (LOOKING_GLASS_SLICE_WIDTH < LOOKING_GLASS_SLICE_WIDTH_MAX)) { - // Convert bins of this spectrum slice into a representative max_power and when enough, into pixels - // Spectrum.db has 256 bins. - // All things said and done, we actually need 240 of those bins - for (uint8_t bin = 0; bin < 240; bin++) { - // if the view is done in one pass, show it like in analog_audio_app - if ((LOOKING_GLASS_SLICE_WIDTH < LOOKING_GLASS_SLICE_WIDTH_MAX)) { - // Center 16 bins are ignored (DC spike is blanked) - if (bin < 120) { - if (spectrum.db[256 - 120 + bin] > max_power) // 134 - max_power = spectrum.db[256 - 120 + bin]; - } else { - if (spectrum.db[bin - 120] > max_power) // 118 - max_power = spectrum.db[bin - 120]; - } - } else // view is made in multiple pass, use original bin picking - { - // Center 12 bins are ignored (DC spike is blanked) Leftmost and rightmost 2 bins are ignored - if (bin < 120) { - if (spectrum.db[134 + bin] > max_power) // 134 - max_power = spectrum.db[134 + bin]; - } else { - if (spectrum.db[bin - 118] > max_power) // 118 - max_power = spectrum.db[bin - 118]; - } - } - - if (bin == 120) { - bins_Hz_size += 12 * each_bin_size; // add DC bin Hz count into the "pixel fulfilled bag of Hz" - } else { - bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz" - } - - if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled - { - if (min_color_power < max_power) - add_spectrum_pixel(max_power); // Pixel will represent max_power - else - add_spectrum_pixel(0); // Filtered out, show black - - max_power = 0; - - if (!pixel_index) // Received indication that a waterfall line has been completed - { - bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin" - f_center = f_center_ini - offset * each_bin_size; // Start a new sweep - radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving - chThdSleepMilliseconds(10); - baseband::spectrum_streaming_start(); // Do the RX - return; - } - bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel - } + // Convert bins of this spectrum slice into a representative max_power and when enough, into pixels + // we actually need SCREEN_W (240) of those bins + for (bin = offset; bin < bin_length + offset; bin++) { + get_max_power(spectrum, bin, max_power); + if (ignore_dc && bin == 119) { + uint8_t next_max_power = 0; + get_max_power(spectrum, 120, next_max_power); + bins_Hz_size += 12 * each_bin_size; // add the ignored DC spike to "pixel fulfilled bag of Hz" + max_power = (max_power + next_max_power) / 2; } - f_center += (256 - (2 * offset)) * each_bin_size; // Move into the next bandwidth slice NOTE: spectrum.sampling_rate = LOOKING_GLASS_SLICE_WIDTH - // lost bins are taken in account so next slice first ignored bins overlap previous kept ones - } else // slow scan - { - offset = 32; - uint8_t bin_length = 80; - for (uint8_t bin = offset; bin < bin_length + offset; bin++) { - if (bin < 120) { - if (spectrum.db[134 + bin] > max_power) // 134 - max_power = spectrum.db[134 + bin]; - } else { - if (spectrum.db[bin - 118] > max_power) // 118 - max_power = spectrum.db[bin - 118]; - } + bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz" - bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz" + if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled + { + if (min_color_power < max_power) + add_spectrum_pixel(max_power); // Pixel will represent max_power + else + add_spectrum_pixel(0); // Filtered out, show black - if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled + max_power = 0; + + if (!pixel_index) // Received indication that a waterfall line has been completed { - if (min_color_power < max_power) - add_spectrum_pixel(max_power); // Pixel will represent max_power - else - add_spectrum_pixel(0); // Filtered out, show black - - max_power = 0; - - if (!pixel_index) // Received indication that a waterfall line has been completed - { - bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin" - f_center = f_center_ini - offset * each_bin_size; // Start a new sweep - radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving - chThdSleepMilliseconds(10); - baseband::spectrum_streaming_start(); // Do the RX - return; - } - bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel + bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin" + f_center = f_center_ini; + retune(); + return; // signal a new line } + bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel } - f_center += bin_length * each_bin_size; } - radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving - chThdSleepMilliseconds(5); - baseband::spectrum_streaming_start(); // Do the RX + f_center += looking_glass_step; + retune(); } void GlassView::on_hide() { @@ -237,61 +219,86 @@ void GlassView::on_range_changed() { reset_live_view(false); f_min = field_frequency_min.value(); f_max = field_frequency_max.value(); - search_span = f_max - f_min; + f_min = f_min * MHZ_DIV; // Transpose into full frequency realm + f_max = f_max * MHZ_DIV; + looking_glass_range = f_max - f_min; + if (looking_glass_range < LOOKING_GLASS_SLICE_WIDTH_MAX) { + mode = LOOKING_GLASS_SINGLEPASS; + } else { + mode = scan_type.selected_index_value(); + } + if (mode == LOOKING_GLASS_SINGLEPASS) { + // if the view is done in one pass, show it like in analog_audio_app + offset = 0; + bin_length = SCREEN_W; + ignore_dc = 0; + } else if (mode == LOOKING_GLASS_FASTSCAN) { + // view is made in multiple pass, use original bin picking + offset = 0; + bin_length = SCREEN_W; + ignore_dc = 1; + } else // if( mode == LOOKING_GLASS_SLOWSCAN ) + { + offset = 16; + bin_length = 80; + ignore_dc = 0; + } + each_bin_size = looking_glass_bandwidth / SPEC_NB_BINS; + if (mode != LOOKING_GLASS_SINGLEPASS) { + looking_glass_step = (bin_length + (ignore_dc * 12)) * each_bin_size; + } else { + looking_glass_step = SPEC_NB_BINS * each_bin_size; + } + adjust_range(&f_min, &f_max, SCREEN_W); + looking_glass_range = f_max - f_min; + marker_pixel_step = looking_glass_range / SCREEN_W; // Each pixel value in Hz + search_span = looking_glass_range / MHZ_DIV; + button_range.set_text(" "); // clear up to 6 chars if (locked_range) { button_range.set_text(">" + to_string_dec_uint(search_span) + "<"); } else { button_range.set_text(" " + to_string_dec_uint(search_span) + " "); } - f_min = (f_min)*MHZ_DIV; // Transpose into full frequency realm - f_max = (f_max)*MHZ_DIV; - adjust_range(&f_min, &f_max, 240); - - marker_pixel_step = (f_max - f_min) / 240; // Each pixel value in Hz - marker = f_min + (f_max - f_min) / 2; - button_marker.set_text(to_string_short_freq(marker)); - PlotMarker(marker); // Refresh marker on screen - - pixel_index = 0; // reset pixel counter - max_power = 0; + pixel_index = 0; // reset pixel counter + max_power = 0; // reset save max power level bins_Hz_size = 0; // reset amount of Hz filled up by pixels - if ((f_max - f_min) <= LOOKING_GLASS_SLICE_WIDTH_MAX) { - LOOKING_GLASS_SLICE_WIDTH = (f_max - f_min); - receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH); - receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH / 2); - } else if (LOOKING_GLASS_SLICE_WIDTH != LOOKING_GLASS_SLICE_WIDTH_MAX) { - LOOKING_GLASS_SLICE_WIDTH = LOOKING_GLASS_SLICE_WIDTH_MAX; - receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH); - receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH); + + if (mode == LOOKING_GLASS_SINGLEPASS) { + looking_glass_bandwidth = looking_glass_range; + looking_glass_sampling_rate = looking_glass_bandwidth / 2; + each_bin_size = looking_glass_bandwidth / SCREEN_W; + } else // if ( mode == LOOKING_GLASS_SLOWSCAN || mode == LOOKING_GLASS_FASTSCAN ) + { + looking_glass_sampling_rate = LOOKING_GLASS_SLICE_WIDTH_MAX; + looking_glass_bandwidth = LOOKING_GLASS_SLICE_WIDTH_MAX; + each_bin_size = looking_glass_bandwidth / SPEC_NB_BINS; } - if (next_mult_of(LOOKING_GLASS_SLICE_WIDTH, 256) > LOOKING_GLASS_SLICE_WIDTH_MAX) - LOOKING_GLASS_SLICE_WIDTH = LOOKING_GLASS_SLICE_WIDTH_MAX; - else - LOOKING_GLASS_SLICE_WIDTH = next_mult_of(LOOKING_GLASS_SLICE_WIDTH, 256); + + on_marker_change(); + + // set the sample rate and bandwidth + receiver_model.set_sampling_rate(looking_glass_sampling_rate); + receiver_model.set_baseband_bandwidth(looking_glass_bandwidth); receiver_model.set_squelch_level(0); - each_bin_size = LOOKING_GLASS_SLICE_WIDTH / 256; - f_center_ini = f_min + (LOOKING_GLASS_SLICE_WIDTH / 2); // Initial center frequency for sweep - f_center = f_center_ini; // Reset sweep into first slice - baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, field_trigger.value()); - receiver_model.set_tuning_frequency(f_center_ini); // tune rx for this slice + f_center_ini = f_min + (looking_glass_bandwidth / 2); // Initial center frequency for sweep + f_center = f_center_ini; // Reset sweep into first slice + baseband::set_spectrum(looking_glass_sampling_rate, field_trigger.value()); + receiver_model.set_tuning_frequency(f_center); // tune rx for this slice } -void GlassView::PlotMarker(rf::Frequency pos) { - pos -= f_min; - pos = pos / marker_pixel_step; // Real pixel - +void GlassView::PlotMarker(uint8_t pos) { uint8_t shift_y = 0; if (live_frequency_view > 0) // plot one line down when in live view { shift_y = 16; } - portapack::display.fill_rectangle({0, 100 + shift_y, 240, 8}, Color::black()); // Clear old marker and whole marker rectangle btw - portapack::display.fill_rectangle({(int)pos - 2, 100 + shift_y, 5, 3}, Color::red()); // Red marker top - portapack::display.fill_rectangle({(int)pos - 1, 103 + shift_y, 3, 3}, Color::red()); // Red marker middle - portapack::display.fill_rectangle({(int)pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom + portapack::display.fill_rectangle({0, 100 + shift_y, SCREEN_W, 8}, Color::black()); // Clear old marker and whole marker rectangle btw + portapack::display.fill_rectangle({pos - 2, 100 + shift_y, 5, 3}, Color::red()); // Red marker top + portapack::display.fill_rectangle({pos - 1, 103 + shift_y, 3, 3}, Color::red()); // Red marker middle + portapack::display.fill_rectangle({pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom } GlassView::GlassView( @@ -335,15 +342,15 @@ GlassView::GlassView( field_frequency_max.set_value(v + min_size); if (locked_range) field_frequency_max.set_value(v + min_size); - this->on_range_changed(); + on_range_changed(); }; field_frequency_min.set_value(presets_db[0].min); // Defaults to first preset field_frequency_min.set_step(steps); field_frequency_min.on_select = [this, &nav](NumberField& field) { - auto new_view = nav_.push(field_frequency_min.value() * 1000000); + auto new_view = nav_.push(field_frequency_min.value() * MHZ_DIV); new_view->on_changed = [this, &field](rf::Frequency f) { - int32_t freq = f / 1000000; + int32_t freq = f / MHZ_DIV; int32_t min_size = steps; if (locked_range) min_size = search_span; @@ -354,7 +361,7 @@ GlassView::GlassView( field_frequency_min.set_value(freq); if (field_frequency_max.value() < (freq + min_size)) field_frequency_max.set_value(freq + min_size); - this->on_range_changed(); + on_range_changed(); }; }; @@ -373,26 +380,26 @@ GlassView::GlassView( field_frequency_min.set_value(v - min_size); if (locked_range) field_frequency_min.set_value(v - min_size); - this->on_range_changed(); + on_range_changed(); }; field_frequency_max.set_value(presets_db[0].max); // Defaults to first preset field_frequency_max.set_step(steps); field_frequency_max.on_select = [this, &nav](NumberField& field) { - auto new_view = nav_.push(field_frequency_max.value() * 1000000); + auto new_view = nav_.push(field_frequency_max.value() * MHZ_DIV); new_view->on_changed = [this, &field](rf::Frequency f) { int32_t min_size = steps; if (locked_range) min_size = search_span; if (min_size < 2) min_size = 2; - int32_t freq = f / 1000000; + int32_t freq = f / MHZ_DIV; if (freq < min_size) freq = min_size; field_frequency_max.set_value(freq); if (field_frequency_min.value() > (freq - min_size)) field_frequency_min.set_value(freq - min_size); - this->on_range_changed(); + on_range_changed(); }; }; @@ -418,7 +425,8 @@ GlassView::GlassView( scan_type.on_change = [this](size_t n, OptionsField::value_t v) { (void)n; - fast_scan = v; + mode = v; + on_range_changed(); }; scan_type.set_selected_index(0); // default legacy fast scan @@ -434,7 +442,7 @@ GlassView::GlassView( button_rst.hidden(true); display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates } else if (v == 1) { - display.fill_rectangle({{0, 108}, {240, 24}}, {0, 0, 0}); + display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0}); live_frequency_view = 1; display.scroll_disable(); level_integration.hidden(false); @@ -442,7 +450,7 @@ GlassView::GlassView( button_jump.hidden(false); button_rst.hidden(false); } else if (v == 2) { - display.fill_rectangle({{0, 108}, {240, 24}}, {0, 0, 0}); + display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0}); live_frequency_view = 2; display.scroll_disable(); level_integration.hidden(false); @@ -472,18 +480,19 @@ GlassView::GlassView( (void)n; field_frequency_min.set_value(presets_db[v].min, false); field_frequency_max.set_value(presets_db[v].max, false); - this->on_range_changed(); + on_range_changed(); }; button_marker.on_change = [this]() { - marker = marker + button_marker.get_encoder_delta() * marker_pixel_step; - if (marker < f_min) - marker = f_min; - if (marker > f_max) - marker = f_max; - button_marker.set_text(to_string_short_freq(marker)); + if (((int)marker_pixel_index + button_marker.get_encoder_delta()) < 0) { + marker_pixel_index = 0; + } else if (((int)marker_pixel_index + button_marker.get_encoder_delta()) > SCREEN_W) { + marker_pixel_index = SCREEN_W; + } else { + marker_pixel_index = marker_pixel_index + button_marker.get_encoder_delta(); + } + on_marker_change(); button_marker.set_encoder_delta(0); - PlotMarker(marker); // Refresh marker on screen }; button_marker.on_select = [this](ButtonWithEncoder&) { @@ -494,7 +503,7 @@ GlassView::GlassView( }; field_trigger.on_change = [this](int32_t v) { - baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, v); + baseband::set_spectrum(looking_glass_sampling_rate, v); }; field_trigger.set_value(32); // Defaults to 32, as normal triggering resolution @@ -522,16 +531,17 @@ GlassView::GlassView( }; display.scroll_set_area(109, 319); - baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, field_trigger.value()); // trigger: - // Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute , - // it keeps adding the output of the fft to the buffer until "trigger" number of calls are made, - // at which time it pushes the buffer up with channel_spectrum.feed + baseband::set_spectrum(looking_glass_sampling_rate, field_trigger.value()); // trigger: + // Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute , + // it keeps adding the output of the fft to the buffer until "trigger" number of calls are made, + // at which time it pushes the buffer up with channel_spectrum.feed + marker_pixel_index = 120; on_range_changed(); receiver_model.set_modulation(ReceiverModel::Mode::SpectrumAnalysis); - receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH); // 20mhz - receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz + receiver_model.set_sampling_rate(looking_glass_sampling_rate); // 20mhz + receiver_model.set_baseband_bandwidth(looking_glass_bandwidth); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz receiver_model.set_squelch_level(0); receiver_model.enable(); } diff --git a/firmware/application/apps/ui_looking_glass_app.hpp b/firmware/application/apps/ui_looking_glass_app.hpp index 74c3fed4..2bdc532d 100644 --- a/firmware/application/apps/ui_looking_glass_app.hpp +++ b/firmware/application/apps/ui_looking_glass_app.hpp @@ -38,7 +38,18 @@ namespace ui { #define LOOKING_GLASS_SLICE_WIDTH_MAX 20000000 #define MHZ_DIV 1000000 -#define X2_MHZ_DIV 2000000 + +// blanked DC (16 centered bins ignored ) and top left and right (2 bins ignored on each side ) +#define LOOKING_GLASS_FASTSCAN 0 +// only first half used (so DC spike is not ignored, it's stopped before the DC spike) minus the 2 first bins +#define LOOKING_GLASS_SLOWSCAN 1 +// analog audio view like +#define LOOKING_GLASS_SINGLEPASS 2 +// one spectrum line number of bins +#define SPEC_NB_BINS 256 +// screen dimensions +#define SCREEN_W 240 +#define SCREEN_H 320 class GlassView : public View { public: @@ -78,16 +89,12 @@ class GlassView : public View { }; std::vector presets_db{}; - - // Each slice bandwidth 20 MHz and a multiple of 256 - // since we are using LOOKING_GLASS_SLICE_WIDTH/256 as the each_bin_size - // it should also be a multiple of 2 since we are using LOOKING_GLASS_SLICE_WIDTH / 2 as centering freq - int64_t LOOKING_GLASS_SLICE_WIDTH = 20000000; - - // frequency rounding helpers + void get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power); + void on_marker_change(); int64_t next_mult_of(int64_t num, int64_t multiplier); void adjust_range(int64_t* f_min, int64_t* f_max, int64_t width); - + void retune(); + bool move_to_next_position(); void on_channel_spectrum(const ChannelSpectrum& spectrum); void do_timers(); void on_range_changed(); @@ -95,7 +102,7 @@ class GlassView : public View { void on_vga_changed(int32_t v_db); void reset_live_view(bool clear_screen); void add_spectrum_pixel(uint8_t power); - void PlotMarker(rf::Frequency pos); + void PlotMarker(uint8_t pos); void load_Presets(); void txtline_process(std::string& line); void populate_Presets(); @@ -106,13 +113,20 @@ class GlassView : public View { rf::Frequency f_center{0}; rf::Frequency f_center_ini{0}; rf::Frequency marker{0}; + uint8_t marker_pixel_index{0}; rf::Frequency marker_pixel_step{0}; - rf::Frequency each_bin_size{LOOKING_GLASS_SLICE_WIDTH / 256}; + // size of one spectrum bin in Hz + rf::Frequency each_bin_size{0}; + // consumed number of Hz, used to know if we have filled a 'bag' , a corresponding pixel length on screen rf::Frequency bins_Hz_size{0}; + rf::Frequency looking_glass_sampling_rate{0}; + rf::Frequency looking_glass_bandwidth{0}; + rf::Frequency looking_glass_range{0}; + rf::Frequency looking_glass_step{0}; uint8_t min_color_power{0}; uint32_t pixel_index{0}; - std::array spectrum_row = {0}; - std::array spectrum_data = {0}; + std::array spectrum_row = {0}; + std::array spectrum_data = {0}; ChannelSpectrumFIFO* fifo{nullptr}; uint8_t max_power = 0; int32_t steps = 0; @@ -120,8 +134,15 @@ class GlassView : public View { int16_t live_frequency_integrate = 3; int64_t max_freq_hold = 0; int16_t max_freq_power = -1000; - bool fast_scan = true; // default to legacy fast scan bool locked_range = false; + uint8_t bin_length = SCREEN_W; + uint8_t real_bin_length = SCREEN_W; + uint8_t offset = 0; + uint8_t tune_offset = 0; + uint8_t bin = 0; + int64_t last_max_freq = 0; + uint8_t mode = LOOKING_GLASS_FASTSCAN; + uint8_t ignore_dc = 0; Labels labels{ {{0, 0}, "MIN: MAX: LNA VGA ", Color::light_grey()}, @@ -200,8 +221,8 @@ class GlassView : public View { {17 * 8, 4 * 16}, 2, { - {"F-", true}, - {"S-", false}, + {"F-", LOOKING_GLASS_FASTSCAN}, + {"S-", LOOKING_GLASS_SLOWSCAN}, }}; OptionsField view_config{ @@ -230,15 +251,15 @@ class GlassView : public View { }}; Button button_jump{ - {240 - 4 * 8, 5 * 16, 4 * 8, 16}, + {SCREEN_W - 4 * 8, 5 * 16, 4 * 8, 16}, "JMP"}; Button button_rst{ - {240 - 9 * 8, 5 * 16, 4 * 8, 16}, + {SCREEN_W - 9 * 8, 5 * 16, 4 * 8, 16}, "RST"}; Text freq_stats{ - {0 * 8, 5 * 16, 240 - 10 * 8, 8}, + {0 * 8, 5 * 16, SCREEN_W - 10 * 8, 8}, ""}; MessageHandlerRegistration message_handler_spectrum_config{