BLE RX/TX Changes (#2752)

* Work on BLE Rx Tx improvements.
* Working on compile size.
* cleanup
* Formatting
* Fixes
* More Improvements + Custom Parsing for Tags
* Moving ERT to external apps.
* Fix Icon.
This commit is contained in:
Netro
2025-08-11 01:42:58 -04:00
committed by GitHub
parent 3983749f11
commit 6b05878532
18 changed files with 1167 additions and 873 deletions

View File

@@ -30,10 +30,10 @@
#define new_way
int BTLETxProcessor::gen_sample_from_phy_bit(char* bit, char* sample, int num_bit) {
int BTLETxProcessor::gen_sample_from_phy_bit(char* bit, int8_t* sample, int num_bit) {
int num_sample = (num_bit * SAMPLE_PER_SYMBOL) + (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL);
int8_t* tmp_phy_bit_over_sampling_int8 = (int8_t*)tmp_phy_bit_over_sampling;
memset(tmp_phy_bit_over_sampling_int8, 0, sizeof(tmp_phy_bit_over_sampling_int8));
int i, j;
@@ -242,6 +242,7 @@ void BTLETxProcessor::fill_adv_pdu_header(PKT_INFO* pkt, int txadd, int rxadd, i
bit_out[2] = 1;
bit_out[1] = 0;
bit_out[0] = 0;
rxadd = 1; // Scan response assumed to be with random address.
} else if (pkt->pkt_type == CONNECT_REQ) {
bit_out[3] = 0;
bit_out[2] = 1;
@@ -279,14 +280,12 @@ void BTLETxProcessor::fill_adv_pdu_header(PKT_INFO* pkt, int txadd, int rxadd, i
int BTLETxProcessor::calculate_sample_for_ADV(PKT_INFO* pkt) {
pkt->num_info_bit = 0;
// gen preamble and access address
const char* AA = "AA";
const char* AAValue = "D6BE898E";
pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit((char*)AA, pkt->info_bit, 0, 1);
pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit((char*)AAValue, pkt->info_bit + pkt->num_info_bit, 0, 4);
pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit(AA, pkt->info_bit, 0, 1);
pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit(AAValue, pkt->info_bit + pkt->num_info_bit, 0, 4);
// get txadd and rxadd
int txadd = 0, rxadd = 0;
// Tx assumed to be random address.
int txadd = 1, rxadd = 0;
pkt->num_info_bit = pkt->num_info_bit + 16; // 16 is header length
@@ -332,39 +331,56 @@ int BTLETxProcessor::calculate_pkt_info(PKT_INFO* pkt) {
void BTLETxProcessor::execute(const buffer_c8_t& buffer) {
int8_t re, im;
// This is called at 4M/2048 = 1953Hz
for (size_t i = 0; i < buffer.count; i++) {
if (configured) {
// This is going to loop through each sample bit and push it to the output buffer.
if (sample_count > length) {
configured = false;
sample_count = 0;
txprogress_message.done = true;
shared_memory.application_queue.push(txprogress_message);
} else {
// Real and imaginary was already calculated in gen_sample_from_phy_bit.
// It was processed from each data bit, run through a Gaussian Filter, and then ran through sin and cos table to get each IQ bit.
re = (int8_t)packets.phy_sample[sample_count++];
im = (int8_t)packets.phy_sample[sample_count++];
buffer.p[i] = {re, im};
if (progress_count >= progress_notice) {
progress_count = 0;
txprogress_message.progress++;
txprogress_message.done = false;
shared_memory.application_queue.push(txprogress_message);
} else {
progress_count++;
}
}
} else {
re = 0;
im = 0;
buffer.p[i] = {re, im};
if (!configured) {
for (size_t i = 0; i < buffer.count; i++) {
buffer.p[i] = {0, 0}; // Fill the buffer with zeros if not configured
}
return;
}
if (configured) {
switch (txprogress_message.progress) {
case 1:
case 2: {
for (size_t i = 0; i < buffer.count; i++) {
buffer.p[i] = {0, 0}; // Pre and Post pad BLE Packet.
}
} break;
case 0: {
size_t i = 0;
for (i = 0; (i < buffer.count) && (sample_count < length); i++) {
re = packets.phy_sample[sample_count++];
im = packets.phy_sample[sample_count++];
buffer.p[i] = {re, im};
}
if (sample_count >= length && i < buffer.count) {
// Fill the rest of the buffer with zeros if we reach the end of the packet
for (; i < buffer.count; i++) {
buffer.p[i] = {0, 0};
}
}
} break;
case 3: {
for (size_t i = 0; i < buffer.count; i++) {
buffer.p[i] = {0, 0}; // Pre and Post pad BLE Packet.
}
if (sample_count >= length) {
sample_count = 0;
configured = false;
doneSending = true;
txprogress_message.done = true;
shared_memory.application_queue.push(txprogress_message);
}
} break;
}
txprogress_message.progress++;
}
}
@@ -397,11 +413,13 @@ void BTLETxProcessor::configure(const BTLETxConfigureMessage& message) {
// Starting at sample_count 0 since packets.num_phy_sample contains every sample needed to be sent out.
sample_count = 0;
progress_count = 0;
repeatCount = 0;
progress_notice = 64;
txprogress_message.progress = 0;
txprogress_message.done = false;
configured = true;
doneSending = false;
}
int main() {

View File

@@ -80,18 +80,11 @@ class BTLETxProcessor : public BasebandProcessor {
int num_info_bit;
char info_bit[MAX_NUM_PHY_BYTE * 8]; // without CRC and whitening
int num_info_byte;
uint8_t info_byte[MAX_NUM_PHY_BYTE];
int num_phy_bit;
char phy_bit[MAX_NUM_PHY_BYTE * 8]; // all bits which will be fed to GFSK modulator
int num_phy_byte;
uint8_t phy_byte[MAX_NUM_PHY_BYTE];
int num_phy_sample;
char phy_sample[2 * MAX_NUM_PHY_SAMPLE]; // GFSK output to D/A (hackrf board)
int8_t phy_sample1[2 * MAX_NUM_PHY_SAMPLE]; // GFSK output to D/A (hackrf board)
int8_t phy_sample[2 * MAX_NUM_PHY_SAMPLE]; // GFSK output to D/A (hackrf board)
int space; // how many millisecond null signal shouwl be padded after this packet
};
@@ -108,22 +101,27 @@ class BTLETxProcessor : public BasebandProcessor {
void crc24(char* bit_in, int num_bit, char* init_hex, char* crc_result);
int convert_hex_to_bit(char* hex, char* bit, int stream_flip, int octet_limit);
void octet_hex_to_bit(char* hex, char* bit);
int gen_sample_from_phy_bit(char* bit, char* sample, int num_bit);
int gen_sample_from_phy_bit(char* bit, int8_t* sample, int num_bit);
bool configured = false;
float tmp_phy_bit_over_sampling[MAX_NUM_PHY_SAMPLE + 2 * LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL];
int8_t tmp_phy_bit_over_sampling_int8[MAX_NUM_PHY_SAMPLE + 2 * LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL];
float gauss_coef[LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL] = {7.561773e-09, 1.197935e-06, 8.050684e-05, 2.326833e-03, 2.959908e-02, 1.727474e-01, 4.999195e-01, 8.249246e-01, 9.408018e-01, 8.249246e-01, 4.999195e-01, 1.727474e-01, 2.959908e-02, 2.326833e-03, 8.050684e-05, 1.197935e-06};
uint32_t samples_per_bit{4};
uint32_t channel_number{37};
char macAddress[13] = "FFFFFFFFFF";
char AA[3] = "AA";
char AAValue[9] = "D6BE898E";
char advertisementData[63] = {0};
uint32_t length{0};
uint32_t shift_zero{}, shift_one{};
uint32_t progress_notice{}, progress_count{0};
uint32_t sample_count{0};
uint32_t paddingCount{0};
uint32_t repeatCount{0};
uint32_t phase{0}, sphase{0};
bool doneSending{false};
uint8_t cur_bit{0};
uint16_t bit_pos{0};