#ifndef __FPROTO_Kedsum_H__ #define __FPROTO_Kedsum_H__ #include "weatherbase.hpp" typedef enum { KedsumTHDecoderStepReset = 0, KedsumTHDecoderStepCheckPreambule, KedsumTHDecoderStepSaveDuration, KedsumTHDecoderStepCheckDuration, } KedsumTHDecoderStep; class FProtoWeatherKedsum : public FProtoWeatherBase { public: FProtoWeatherKedsum() { sensorType = FPW_KEDSUM; } void feed(bool level, uint32_t duration) { switch (parser_step) { case KedsumTHDecoderStepReset: if ((level) && (DURATION_DIFF(duration, te_short) < te_delta)) { parser_step = KedsumTHDecoderStepCheckPreambule; te_last = duration; header_count = 0; } break; case KedsumTHDecoderStepCheckPreambule: if (level) { te_last = duration; } else { if ((DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long * 4) < te_delta * 4)) { // Found preambule header_count++; } else if ( (DURATION_DIFF(te_last, te_short) < te_delta) && (duration < (te_long * 2 + te_delta * 2))) { // Found syncPrefix if (header_count > 0) { parser_step = KedsumTHDecoderStepSaveDuration; decode_data = 0; decode_count_bit = 0; if ((DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long) < te_delta * 2)) { subghz_protocol_blocks_add_bit(0); parser_step = KedsumTHDecoderStepSaveDuration; } else if ( (DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long * 2) < te_delta * 4)) { subghz_protocol_blocks_add_bit(1); parser_step = KedsumTHDecoderStepSaveDuration; } else { parser_step = KedsumTHDecoderStepReset; } } } else { parser_step = KedsumTHDecoderStepReset; } } break; case KedsumTHDecoderStepSaveDuration: if (level) { te_last = duration; parser_step = KedsumTHDecoderStepCheckDuration; } else { parser_step = KedsumTHDecoderStepReset; } break; case KedsumTHDecoderStepCheckDuration: if (!level) { if (DURATION_DIFF(duration, te_long * 4) < te_delta * 4) { // Found syncPostfix if ((decode_count_bit == min_count_bit_for_found) && ws_protocol_kedsum_th_check_crc()) { data = decode_data; data_count_bit = decode_count_bit; ws_protocol_kedsum_th_remote_controller(); if (callback) callback(this); } decode_data = 0; decode_count_bit = 0; parser_step = KedsumTHDecoderStepReset; break; } else if ( (DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long) < te_delta * 2)) { subghz_protocol_blocks_add_bit(0); parser_step = KedsumTHDecoderStepSaveDuration; } else if ( (DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long * 2) < te_delta * 4)) { subghz_protocol_blocks_add_bit(1); parser_step = KedsumTHDecoderStepSaveDuration; } else { parser_step = KedsumTHDecoderStepReset; } } else { parser_step = KedsumTHDecoderStepReset; } break; } } protected: uint32_t te_short = 500; uint32_t te_long = 2000; uint32_t te_delta = 150; uint32_t min_count_bit_for_found = 42; bool ws_protocol_kedsum_th_check_crc() { uint8_t msg[] = { static_cast(decode_data >> 32), static_cast(decode_data >> 24), static_cast(decode_data >> 16), static_cast(decode_data >> 8), static_cast(decode_data)}; uint8_t crc = FProtoGeneral::subghz_protocol_blocks_crc4(msg, 4, 0x03, 0); // CRC-4 poly 0x3 init 0x0 xor last 4 bits crc ^= msg[4] >> 4; // last nibble is only XORed return (crc == (msg[4] & 0x0F)); } void ws_protocol_kedsum_th_remote_controller() { id = data >> 32; if ((data >> 30) & 0x3) { battery_low = 0; } else { battery_low = 1; } channel = ((data >> 28) & 0x3) + 1; uint16_t temp_raw = ((data >> 16) & 0x0f) << 8 | ((data >> 20) & 0x0f) << 4 | ((data >> 24) & 0x0f); temp = FProtoGeneral::locale_fahrenheit_to_celsius(((float)temp_raw - 900.0f) / 10.0f); humidity = ((data >> 8) & 0x0f) << 4 | ((data >> 12) & 0x0f); } }; #endif