/* * Copyright (C) 2020 Belousov Oleg * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "dsp_hilbert.hpp" #include "dsp_sos_config.hpp" #include "utility_m4.hpp" namespace dsp { HilbertTransform::HilbertTransform() { n = 0; sos_input.configure(half_band_lpf_config); sos_i.configure(half_band_lpf_config); sos_q.configure(half_band_lpf_config); } void HilbertTransform::execute(float in, float& out_i, float& out_q) { // Synthesized Hilbert Transform, it is implemented based on 1/2 band LPF and later freq shift fs/4, achieving a H.T_BW of transmitted = fs/2 ; // Half_band LPF means a LP filter with f_cut_off = fs/4; Half band = Half max band = 1/2 * fs_max = 1/2 x f_Nyquist = 1/2 * fs/2 = fs/4 float a = 0, b = 0; float in_filtered = sos_input.execute(in) * 1.0f; // Anti-aliasing LPF at fs/4 mic audio filter front-end. switch (n) { case 0: a = in_filtered; b = 0; break; case 1: a = 0; b = -in_filtered; break; case 2: a = -in_filtered; b = 0; break; case 3: a = 0; b = in_filtered; break; } float i = sos_i.execute(a) * 2.0f; float q = sos_q.execute(b) * 2.0f; switch (n) { case 0: out_i = i; out_q = q; break; case 1: out_i = -q; out_q = i; break; case 2: out_i = -i; out_q = -q; break; case 3: out_i = q; out_q = -i; break; } n = (n + 1) % 4; } Real_to_Complex::Real_to_Complex() { // No need to call a separate configuration method like "Real_to_Complex()" externally before using the execute() method // This is the constructor for the Real_to_Complex class. // It initializes the member variables and calls the configure function for the sos_input, sos_i, and sos_q filters. // to ensure the object is ready to use right after instantiation. n = 0; sos_input.configure(full_band_lpf_config); sos_i.configure(full_band_lpf_config); sos_q.configure(full_band_lpf_config); sos_mag_sq.configure(quarter_band_lpf_config); // for APT LPF subcarrier filter. (1/4 Nyquist fs/2 = 1/4 * 12Khz/2 = 1.5khz) } void Real_to_Complex::execute(float in, float& out_mag_sq_lpf) { // Full_band LPF means a LP filter with f_cut_off = fs/2; Full band = Full max band = 1/2 * fs_max = 1.0 x f_Nyquist = 1 * fs/2 = fs/2 float a = 0, b = 0; float out_i = 0, out_q = 0, out_mag_sq = 0; // int32_t packed; float in_filtered = sos_input.execute(in) * 1.0f; // Anti-aliasing full band LPF, fc = fs/2= 6k, audio filter front-end. switch (n) { case 0: a = in_filtered; b = 0; break; case 1: a = 0; b = -in_filtered; break; case 2: a = -in_filtered; b = 0; break; case 3: a = 0; b = in_filtered; break; } float i = sos_i.execute(a) * 1.0f; // better keep <1.0f to minimize recorded APT(t) black level artifacts.- float q = sos_q.execute(b) * 1.0f; switch (n) { // shifting down -fs4 (fs = 12khz , fs/4 = 3khz) case 0: out_i = i; out_q = q; break; case 1: out_i = -q; out_q = i; break; case 2: out_i = -i; out_q = -q; break; case 3: out_i = q; out_q = -i; break; } n = (n + 1) % 4; /* res = __smuad(val1,val2); p1 = val1[15:0] × val2[15:0] p2 = val1[31:16] × val2[31:16] res[31:0] = p1 + p2 return res; */ // Not strict Magnitude complex calculation, it is a cross multiplication (lower 16 bit real x lower 16 imag) + 0 (higher 16 bits comp), // but better visual results comparing real magnitude calculation, (better map diagonal lines reproduction, and less artifacts in APT signal(t) out_mag_sq = __SMUAD(out_i, out_q); // "cross-magnitude" of the complex (out_i + j out_q) out_mag_sq_lpf = sos_mag_sq.execute((out_mag_sq)) * 2.0f; // LPF quater band = 1.5khz APT signal out_mag_sq_lpf /= 32768.0f; // normalize ; // Compress clipping positive APT signal [-1.5 ..1.5] input , converted to [-1.0 ...1.0] with "S" compressor gain shape. if (out_mag_sq_lpf > 1.0f) { out_mag_sq_lpf = 1.0f; // clipped signal at +1.0f, APT signal is positive, no need to clip -1.0 } else { out_mag_sq_lpf = out_mag_sq_lpf * (1.5f - ((out_mag_sq_lpf * out_mag_sq_lpf) / 2.0f)); } } } /* namespace dsp */