#ifndef __FPROTO_GTWT03_H__ #define __FPROTO_GTWT03_H__ #include "weatherbase.hpp" #define AURIOL_AHFL_CONST_DATA 0b0100 typedef enum { GT_WT03DecoderStepReset = 0, GT_WT03DecoderStepCheckPreambule, GT_WT03DecoderStepSaveDuration, GT_WT03DecoderStepCheckDuration, } GT_WT03DecoderStep; class FProtoWeatherGTWT03 : public FProtoWeatherBase { public: FProtoWeatherGTWT03() { sensorType = FPW_GTWT03; } void feed(bool level, uint32_t duration) { switch (parser_step) { case GT_WT03DecoderStepReset: if ((level) && (DURATION_DIFF(duration, te_short * 3) < te_delta * 2)) { parser_step = GT_WT03DecoderStepCheckPreambule; te_last = duration; header_count = 0; } break; case GT_WT03DecoderStepCheckPreambule: if (level) { te_last = duration; } else { if ((DURATION_DIFF(te_last, te_short * 3) < te_delta * 2) && (DURATION_DIFF(duration, te_short * 3) < te_delta * 2)) { // Found preambule header_count++; } else if (header_count == 4) { if ((DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long) < te_delta)) { decode_data = 0; decode_count_bit = 0; subghz_protocol_blocks_add_bit(0); parser_step = GT_WT03DecoderStepSaveDuration; } else if ( (DURATION_DIFF(te_last, te_long) < te_delta) && (DURATION_DIFF(duration, te_short) < te_delta)) { decode_data = 0; decode_count_bit = 0; subghz_protocol_blocks_add_bit(1); parser_step = GT_WT03DecoderStepSaveDuration; } else { parser_step = GT_WT03DecoderStepReset; } } else { parser_step = GT_WT03DecoderStepReset; } } break; case GT_WT03DecoderStepSaveDuration: if (level) { te_last = duration; parser_step = GT_WT03DecoderStepCheckDuration; } else { parser_step = GT_WT03DecoderStepReset; } break; case GT_WT03DecoderStepCheckDuration: if (!level) { if (((DURATION_DIFF(te_last, te_short * 3) < te_delta * 2) && (DURATION_DIFF(duration, te_short * 3) < te_delta * 2))) { if ((decode_count_bit == min_count_bit_for_found) && ws_protocol_gt_wt_03_check_crc()) { data = decode_data; data_count_bit = decode_count_bit; ws_protocol_gt_wt_03_remote_controller(); if (callback) callback(this); } decode_data = 0; decode_count_bit = 0; header_count = 1; parser_step = GT_WT03DecoderStepCheckPreambule; break; } else if ( (DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long) < te_delta)) { subghz_protocol_blocks_add_bit(0); parser_step = GT_WT03DecoderStepSaveDuration; } else if ( (DURATION_DIFF(te_last, te_long) < te_delta) && (DURATION_DIFF(duration, te_short) < te_delta)) { subghz_protocol_blocks_add_bit(1); parser_step = GT_WT03DecoderStepSaveDuration; } else { parser_step = GT_WT03DecoderStepReset; } } else { parser_step = GT_WT03DecoderStepReset; } break; } } protected: uint32_t te_short = 285; uint32_t te_long = 570; uint32_t te_delta = 120; uint32_t min_count_bit_for_found = 41; void ws_protocol_gt_wt_03_remote_controller() { id = data >> 33; humidity = (data >> 25) & 0xFF; if (humidity <= 10) { // actually the sensors sends 10 below working range of 20% humidity = 0; } else if (humidity > 95) { // actually the sensors sends 110 above working range of 90% humidity = 100; } battery_low = (data >> 24) & 1; // (data >> 23) & 1; channel = ((data >> 21) & 0x03) + 1; if (!((data >> 20) & 1)) { temp = (float)((data >> 9) & 0x07FF) / 10.0f; } else { temp = (float)((~(data >> 9) & 0x07FF) + 1) / -10.0f; } } bool ws_protocol_gt_wt_03_check_crc() { uint8_t msg[] = { static_cast(decode_data >> 33), static_cast(decode_data >> 25), static_cast(decode_data >> 17), static_cast(decode_data >> 9)}; uint8_t sum = 0; for (unsigned k = 0; k < sizeof(msg); ++k) { uint8_t data = msg[k]; uint16_t key = 0x3100; for (int i = 7; i >= 0; --i) { // XOR key into sum if data bit is set if ((data >> i) & 1) sum ^= key & 0xff; // roll the key right key = (key >> 1); } } return ((sum ^ (uint8_t)((decode_data >> 1) & 0xFF)) == 0x2D); } }; #endif