/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef __TOUCH_H__ #define __TOUCH_H__ #include <cstdint> #include <cstddef> #include <algorithm> #include <array> #include <functional> #include "debounce.hpp" #include "ui.hpp" namespace touch { using sample_t = uint16_t; constexpr sample_t sample_max = 1023; // If you have a dead bottom-left corner try to increase the sensitivity, // but look for flickering touch indicator in the Buttons test screen // in which case decrease sensitivity to avoid killing backlight timeout constexpr sample_t touch_sensitivity = 32; constexpr sample_t touch_threshold = sample_max / touch_sensitivity; struct Samples { sample_t xp; sample_t xn; sample_t yp; sample_t yn; constexpr Samples() : Samples{0} { } constexpr Samples( uint32_t v) : xp{static_cast<sample_t>(v)}, xn{static_cast<sample_t>(v)}, yp{static_cast<sample_t>(v)}, yn{static_cast<sample_t>(v)} { } constexpr Samples( uint32_t xp, uint32_t xn, uint32_t yp, uint32_t yn) : xp{static_cast<sample_t>(xp)}, xn{static_cast<sample_t>(xn)}, yp{static_cast<sample_t>(yp)}, yn{static_cast<sample_t>(yn)} { } Samples& operator+=(const Samples& r) { xp += r.xp; xn += r.xn; yp += r.yp; yn += r.yn; return *this; } Samples operator/(const unsigned int r) const { return { static_cast<sample_t>(xp / r), static_cast<sample_t>(xn / r), static_cast<sample_t>(yp / r), static_cast<sample_t>(yn / r)}; } Samples operator>>(const size_t n) const { return { static_cast<sample_t>(xp >> n), static_cast<sample_t>(xn >> n), static_cast<sample_t>(yp >> n), static_cast<sample_t>(yn >> n)}; } }; struct Frame { Samples pressure{}; Samples x{}; Samples y{}; bool touch{false}; }; struct Metrics { const float x; const float y; const float r; }; Metrics calculate_metrics(const Frame& frame); struct DigitizerPoint { int32_t x; int32_t y; }; struct Calibration { /* Touch screen calibration matrix, based on article by Carlos E. Vidales: * http://www.embedded.com/design/system-integration/4023968/How-To-Calibrate-Touch-Screens */ constexpr Calibration( const std::array<DigitizerPoint, 3>& s, const std::array<ui::Point, 3>& d) : k{(s[0].x - s[2].x) * (s[1].y - s[2].y) - (s[1].x - s[2].x) * (s[0].y - s[2].y)}, a{(d[0].x() - d[2].x()) * (s[1].y - s[2].y) - (d[1].x() - d[2].x()) * (s[0].y - s[2].y)}, b{(s[0].x - s[2].x) * (d[1].x() - d[2].x()) - (d[0].x() - d[2].x()) * (s[1].x - s[2].x)}, c{s[0].y * (s[2].x * d[1].x() - s[1].x * d[2].x()) + s[1].y * (s[0].x * d[2].x() - s[2].x * d[0].x()) + s[2].y * (s[1].x * d[0].x() - s[0].x * d[1].x())}, d{(d[0].y() - d[2].y()) * (s[1].y - s[2].y) - (d[1].y() - d[2].y()) * (s[0].y - s[2].y)}, e{(s[0].x - s[2].x) * (d[1].y() - d[2].y()) - (d[0].y() - d[2].y()) * (s[1].x - s[2].x)}, f{s[0].y * (s[2].x * d[1].y() - s[1].x * d[2].y()) + s[1].y * (s[0].x * d[2].y() - s[2].x * d[0].y()) + s[2].y * (s[1].x * d[0].y() - s[0].x * d[1].y())} { } constexpr Calibration() : Calibration( /* Values derived from one PortaPack H1 unit. */ {{{256, 731}, {880, 432}, {568, 146}}}, {{{32, 48}, {208, 168}, {120, 288}}}) { } ui::Point translate(const DigitizerPoint& p) const; private: int32_t k; int32_t a; int32_t b; int32_t c; int32_t d; int32_t e; int32_t f; }; template <size_t N> class Filter { public: constexpr Filter() = default; void reset() { history.fill(0); history_history = 0; accumulator = 0; n = 0; } void feed(const sample_t value) { accumulator = accumulator + value - history[n]; history[n] = value; n = (n + 1) % history.size(); history_history = (history_history << 1) | 1U; } int32_t value() const { return accumulator / N; } bool stable(const uint32_t bound) const { if (history_valid()) { const auto minmax = std::minmax_element(history.cbegin(), history.cend()); const auto min = *minmax.first; const auto max = *minmax.second; const uint32_t delta = max - min; return (delta < bound); } else { return false; } } private: static constexpr uint32_t history_history_mask{(1U << N) - 1}; std::array<sample_t, N> history{}; uint32_t history_history{0}; int32_t accumulator{0}; size_t n{0}; bool history_valid() const { return (history_history & history_history_mask) == history_history_mask; } }; class Manager { public: std::function<void(ui::TouchEvent)> on_event{}; void feed(const Frame& frame); private: enum State { NoTouch, TouchDetected, }; static constexpr size_t touch_count_threshold{3}; static constexpr uint32_t touch_stable_bound{8}; // Ensure filter length is equal or less than touch_count_threshold, // or coordinates from the last touch will be in the initial averages. Filter<touch_count_threshold> filter_x{}; Filter<touch_count_threshold> filter_y{}; // Debounce touch_debounce; State state{State::NoTouch}; bool point_stable() const { return filter_x.stable(touch_stable_bound) && filter_y.stable(touch_stable_bound); } ui::Point filtered_point() const; void touch_started() { fire_event(ui::TouchEvent::Type::Start); } void touch_moved() { fire_event(ui::TouchEvent::Type::Move); } void touch_ended() { fire_event(ui::TouchEvent::Type::End); } void fire_event(ui::TouchEvent::Type type) { if (on_event) { on_event({filtered_point(), type}); } } }; } /* namespace touch */ #endif /*__TOUCH_H__*/