/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011,2012,2013 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . --- A special exception to the GPL can be applied should you wish to distribute a combined work that includes ChibiOS/RT, without being obliged to provide the source code for any proprietary components. See the file exception.txt for full details of how and when the exception can be applied. */ /** * @file chsem.c * @brief Semaphores code. * * @addtogroup semaphores * @details Semaphores related APIs and services. * *

Operation mode

* Semaphores are a flexible synchronization primitive, ChibiOS/RT * implements semaphores in their "counting semaphores" variant as * defined by Edsger Dijkstra plus several enhancements like: * - Wait operation with timeout. * - Reset operation. * - Atomic wait+signal operation. * - Return message from the wait operation (OK, RESET, TIMEOUT). * . * The binary semaphores variant can be easily implemented using * counting semaphores.
* Operations defined for semaphores: * - Signal: The semaphore counter is increased and if the * result is non-positive then a waiting thread is removed from * the semaphore queue and made ready for execution. * - Wait: The semaphore counter is decreased and if the result * becomes negative the thread is queued in the semaphore and * suspended. * - Reset: The semaphore counter is reset to a non-negative * value and all the threads in the queue are released. * . * Semaphores can be used as guards for mutual exclusion zones * (note that mutexes are recommended for this kind of use) but * also have other uses, queues guards and counters for example.
* Semaphores usually use a FIFO queuing strategy but it is possible * to make them order threads by priority by enabling * @p CH_USE_SEMAPHORES_PRIORITY in @p chconf.h. * @pre In order to use the semaphore APIs the @p CH_USE_SEMAPHORES * option must be enabled in @p chconf.h. * @{ */ #include "ch.h" #if CH_USE_SEMAPHORES || defined(__DOXYGEN__) #if CH_USE_SEMAPHORES_PRIORITY #define sem_insert(tp, qp) prio_insert(tp, qp) #else #define sem_insert(tp, qp) queue_insert(tp, qp) #endif /** * @brief Initializes a semaphore with the specified counter value. * * @param[out] sp pointer to a @p Semaphore structure * @param[in] n initial value of the semaphore counter. Must be * non-negative. * * @init */ void chSemInit(Semaphore *sp, cnt_t n) { chDbgCheck((sp != NULL) && (n >= 0), "chSemInit"); queue_init(&sp->s_queue); sp->s_cnt = n; } /** * @brief Performs a reset operation on the semaphore. * @post After invoking this function all the threads waiting on the * semaphore, if any, are released and the semaphore counter is set * to the specified, non negative, value. * @note The released threads can recognize they were waked up by a reset * rather than a signal because the @p chSemWait() will return * @p RDY_RESET instead of @p RDY_OK. * * @param[in] sp pointer to a @p Semaphore structure * @param[in] n the new value of the semaphore counter. The value must * be non-negative. * * @api */ void chSemReset(Semaphore *sp, cnt_t n) { chSysLock(); chSemResetI(sp, n); chSchRescheduleS(); chSysUnlock(); } /** * @brief Performs a reset operation on the semaphore. * @post After invoking this function all the threads waiting on the * semaphore, if any, are released and the semaphore counter is set * to the specified, non negative, value. * @post This function does not reschedule so a call to a rescheduling * function must be performed before unlocking the kernel. Note that * interrupt handlers always reschedule on exit so an explicit * reschedule must not be performed in ISRs. * @note The released threads can recognize they were waked up by a reset * rather than a signal because the @p chSemWait() will return * @p RDY_RESET instead of @p RDY_OK. * * @param[in] sp pointer to a @p Semaphore structure * @param[in] n the new value of the semaphore counter. The value must * be non-negative. * * @iclass */ void chSemResetI(Semaphore *sp, cnt_t n) { cnt_t cnt; chDbgCheckClassI(); chDbgCheck((sp != NULL) && (n >= 0), "chSemResetI"); chDbgAssert(((sp->s_cnt >= 0) && isempty(&sp->s_queue)) || ((sp->s_cnt < 0) && notempty(&sp->s_queue)), "chSemResetI(), #1", "inconsistent semaphore"); cnt = sp->s_cnt; sp->s_cnt = n; while (++cnt <= 0) chSchReadyI(lifo_remove(&sp->s_queue))->p_u.rdymsg = RDY_RESET; } /** * @brief Performs a wait operation on a semaphore. * * @param[in] sp pointer to a @p Semaphore structure * @return A message specifying how the invoking thread has been * released from the semaphore. * @retval RDY_OK if the thread has not stopped on the semaphore or the * semaphore has been signaled. * @retval RDY_RESET if the semaphore has been reset using @p chSemReset(). * * @api */ msg_t chSemWait(Semaphore *sp) { msg_t msg; chSysLock(); msg = chSemWaitS(sp); chSysUnlock(); return msg; } /** * @brief Performs a wait operation on a semaphore. * * @param[in] sp pointer to a @p Semaphore structure * @return A message specifying how the invoking thread has been * released from the semaphore. * @retval RDY_OK if the thread has not stopped on the semaphore or the * semaphore has been signaled. * @retval RDY_RESET if the semaphore has been reset using @p chSemReset(). * * @sclass */ msg_t chSemWaitS(Semaphore *sp) { chDbgCheckClassS(); chDbgCheck(sp != NULL, "chSemWaitS"); chDbgAssert(((sp->s_cnt >= 0) && isempty(&sp->s_queue)) || ((sp->s_cnt < 0) && notempty(&sp->s_queue)), "chSemWaitS(), #1", "inconsistent semaphore"); if (--sp->s_cnt < 0) { currp->p_u.wtobjp = sp; sem_insert(currp, &sp->s_queue); chSchGoSleepS(THD_STATE_WTSEM); return currp->p_u.rdymsg; } return RDY_OK; } /** * @brief Performs a wait operation on a semaphore with timeout specification. * * @param[in] sp pointer to a @p Semaphore structure * @param[in] time the number of ticks before the operation timeouts, * the following special values are allowed: * - @a TIME_IMMEDIATE immediate timeout. * - @a TIME_INFINITE no timeout. * . * @return A message specifying how the invoking thread has been * released from the semaphore. * @retval RDY_OK if the thread has not stopped on the semaphore or the * semaphore has been signaled. * @retval RDY_RESET if the semaphore has been reset using @p chSemReset(). * @retval RDY_TIMEOUT if the semaphore has not been signaled or reset within * the specified timeout. * * @api */ msg_t chSemWaitTimeout(Semaphore *sp, systime_t time) { msg_t msg; chSysLock(); msg = chSemWaitTimeoutS(sp, time); chSysUnlock(); return msg; } /** * @brief Performs a wait operation on a semaphore with timeout specification. * * @param[in] sp pointer to a @p Semaphore structure * @param[in] time the number of ticks before the operation timeouts, * the following special values are allowed: * - @a TIME_IMMEDIATE immediate timeout. * - @a TIME_INFINITE no timeout. * . * @return A message specifying how the invoking thread has been * released from the semaphore. * @retval RDY_OK if the thread has not stopped on the semaphore or the * semaphore has been signaled. * @retval RDY_RESET if the semaphore has been reset using @p chSemReset(). * @retval RDY_TIMEOUT if the semaphore has not been signaled or reset within * the specified timeout. * * @sclass */ msg_t chSemWaitTimeoutS(Semaphore *sp, systime_t time) { chDbgCheckClassS(); chDbgCheck(sp != NULL, "chSemWaitTimeoutS"); chDbgAssert(((sp->s_cnt >= 0) && isempty(&sp->s_queue)) || ((sp->s_cnt < 0) && notempty(&sp->s_queue)), "chSemWaitTimeoutS(), #1", "inconsistent semaphore"); if (--sp->s_cnt < 0) { if (TIME_IMMEDIATE == time) { sp->s_cnt++; return RDY_TIMEOUT; } currp->p_u.wtobjp = sp; sem_insert(currp, &sp->s_queue); return chSchGoSleepTimeoutS(THD_STATE_WTSEM, time); } return RDY_OK; } /** * @brief Performs a signal operation on a semaphore. * * @param[in] sp pointer to a @p Semaphore structure * * @api */ void chSemSignal(Semaphore *sp) { chDbgCheck(sp != NULL, "chSemSignal"); chDbgAssert(((sp->s_cnt >= 0) && isempty(&sp->s_queue)) || ((sp->s_cnt < 0) && notempty(&sp->s_queue)), "chSemSignal(), #1", "inconsistent semaphore"); chSysLock(); if (++sp->s_cnt <= 0) chSchWakeupS(fifo_remove(&sp->s_queue), RDY_OK); chSysUnlock(); } /** * @brief Performs a signal operation on a semaphore. * @post This function does not reschedule so a call to a rescheduling * function must be performed before unlocking the kernel. Note that * interrupt handlers always reschedule on exit so an explicit * reschedule must not be performed in ISRs. * * @param[in] sp pointer to a @p Semaphore structure * * @iclass */ void chSemSignalI(Semaphore *sp) { chDbgCheckClassI(); chDbgCheck(sp != NULL, "chSemSignalI"); chDbgAssert(((sp->s_cnt >= 0) && isempty(&sp->s_queue)) || ((sp->s_cnt < 0) && notempty(&sp->s_queue)), "chSemSignalI(), #1", "inconsistent semaphore"); if (++sp->s_cnt <= 0) { /* Note, it is done this way in order to allow a tail call on chSchReadyI().*/ Thread *tp = fifo_remove(&sp->s_queue); tp->p_u.rdymsg = RDY_OK; chSchReadyI(tp); } } /** * @brief Adds the specified value to the semaphore counter. * @post This function does not reschedule so a call to a rescheduling * function must be performed before unlocking the kernel. Note that * interrupt handlers always reschedule on exit so an explicit * reschedule must not be performed in ISRs. * * @param[in] sp pointer to a @p Semaphore structure * @param[in] n value to be added to the semaphore counter. The value * must be positive. * * @iclass */ void chSemAddCounterI(Semaphore *sp, cnt_t n) { chDbgCheckClassI(); chDbgCheck((sp != NULL) && (n > 0), "chSemAddCounterI"); chDbgAssert(((sp->s_cnt >= 0) && isempty(&sp->s_queue)) || ((sp->s_cnt < 0) && notempty(&sp->s_queue)), "chSemAddCounterI(), #1", "inconsistent semaphore"); while (n > 0) { if (++sp->s_cnt <= 0) chSchReadyI(fifo_remove(&sp->s_queue))->p_u.rdymsg = RDY_OK; n--; } } #if CH_USE_SEMSW || defined(__DOXYGEN__) /** * @brief Performs atomic signal and wait operations on two semaphores. * @pre The configuration option @p CH_USE_SEMSW must be enabled in order * to use this function. * * @param[in] sps pointer to a @p Semaphore structure to be signaled * @param[in] spw pointer to a @p Semaphore structure to wait on * @return A message specifying how the invoking thread has been * released from the semaphore. * @retval RDY_OK if the thread has not stopped on the semaphore or the * semaphore has been signaled. * @retval RDY_RESET if the semaphore has been reset using @p chSemReset(). * * @api */ msg_t chSemSignalWait(Semaphore *sps, Semaphore *spw) { msg_t msg; chDbgCheck((sps != NULL) && (spw != NULL), "chSemSignalWait"); chDbgAssert(((sps->s_cnt >= 0) && isempty(&sps->s_queue)) || ((sps->s_cnt < 0) && notempty(&sps->s_queue)), "chSemSignalWait(), #1", "inconsistent semaphore"); chDbgAssert(((spw->s_cnt >= 0) && isempty(&spw->s_queue)) || ((spw->s_cnt < 0) && notempty(&spw->s_queue)), "chSemSignalWait(), #2", "inconsistent semaphore"); chSysLock(); if (++sps->s_cnt <= 0) chSchReadyI(fifo_remove(&sps->s_queue))->p_u.rdymsg = RDY_OK; if (--spw->s_cnt < 0) { Thread *ctp = currp; sem_insert(ctp, &spw->s_queue); ctp->p_u.wtobjp = spw; chSchGoSleepS(THD_STATE_WTSEM); msg = ctp->p_u.rdymsg; } else { chSchRescheduleS(); msg = RDY_OK; } chSysUnlock(); return msg; } #endif /* CH_USE_SEMSW */ #endif /* CH_USE_SEMAPHORES */ /** @} */