/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ch.h" #include "test.h" #include "lpc43xx_cpp.hpp" #include "portapack_shared_memory.hpp" #include "portapack_dma.hpp" #include "gpdma.hpp" #include "baseband_dma.hpp" #include "event_m4.hpp" #include "rssi.hpp" #include "rssi_dma.hpp" #include "touch_dma.hpp" #include "dsp_decimate.hpp" #include "dsp_demodulate.hpp" #include "dsp_fft.hpp" #include "dsp_fir_taps.hpp" #include "dsp_iir.hpp" #include "block_decimator.hpp" #include "clock_recovery.hpp" #include "access_code_correlator.hpp" #include "packet_builder.hpp" #include "message_queue.hpp" #include "utility.hpp" #include "debug.hpp" #include "audio.hpp" #include "audio_dma.hpp" #include "gcc.hpp" #include #include #include #include #include #include constexpr auto baseband_thread_priority = NORMALPRIO + 20; constexpr auto rssi_thread_priority = NORMALPRIO + 10; static float complex16_mag_squared_to_dbv_norm(const float c16_mag_squared) { constexpr float mag2_max = -32768.0f * -32768.0f + -32768.0f * -32768.0f; constexpr float mag2_log10_max = std::log10(mag2_max); constexpr float mag2_to_db_factor = 20.0f / 2.0f; return (std::log10(c16_mag_squared) - mag2_log10_max) * mag2_to_db_factor; } class BasebandStatsCollector { public: template void process(buffer_c8_t buffer, Callback callback) { samples += buffer.count; const size_t report_samples = buffer.sampling_rate * report_interval; const auto report_delta = samples - samples_last_report; if( report_delta >= report_samples ) { const auto idle_ticks = chSysGetIdleThread()->total_ticks; statistics.idle_ticks = (idle_ticks - last_idle_ticks); last_idle_ticks = idle_ticks; const auto baseband_ticks = chThdSelf()->total_ticks; statistics.baseband_ticks = (baseband_ticks - last_baseband_ticks); last_baseband_ticks = baseband_ticks; statistics.saturation = m4_flag_saturation(); clear_m4_flag_saturation(); callback(statistics); samples_last_report = samples; } } private: static constexpr float report_interval { 1.0f }; BasebandStatistics statistics; size_t samples { 0 }; size_t samples_last_report { 0 }; uint32_t last_idle_ticks { 0 }; uint32_t last_baseband_ticks { 0 }; }; class RSSIStatisticsCollector { public: template void process(rf::rssi::buffer_t buffer, Callback callback) { auto p = buffer.p; if( p == nullptr ) { return; } const auto end = &p[buffer.count]; while(p < end) { const uint32_t value = *(p++); if( statistics.min > value ) { statistics.min = value; } if( statistics.max < value ) { statistics.max = value; } statistics.accumulator += value; } statistics.count += buffer.count; const size_t samples_per_update = buffer.sampling_rate * update_interval; if( statistics.count >= samples_per_update ) { callback(statistics); statistics.accumulator = 0; statistics.count = 0; const auto value_0 = *p; statistics.min = value_0; statistics.max = value_0; } } private: static constexpr float update_interval { 0.1f }; RSSIStatistics statistics; }; class ChannelStatsCollector { public: template void feed(buffer_c16_t src, Callback callback) { auto src_p = src.p; while(src_p < &src.p[src.count]) { const uint32_t sample = *__SIMD32(src_p)++; const uint32_t mag_sq = __SMUAD(sample, sample); if( mag_sq > max_squared ) { max_squared = mag_sq; } } count += src.count; const size_t samples_per_update = src.sampling_rate * update_interval; if( count >= samples_per_update ) { const float max_squared_f = max_squared; const float max_db_f = complex16_mag_squared_to_dbv_norm(max_squared_f); const int32_t max_db = max_db_f; const ChannelStatistics statistics { .max_db = max_db, .count = count, }; callback(statistics); max_squared = 0; count = 0; } } private: static constexpr float update_interval { 0.1f }; uint32_t max_squared { 0 }; size_t count { 0 }; }; class AudioStatsCollector { public: template void feed(buffer_s16_t src, Callback callback) { consume_audio_buffer(src); if( update_stats(src.count, src.sampling_rate) ) { callback(statistics); } } template void mute(const size_t sample_count, const size_t sampling_rate, Callback callback) { if( update_stats(sample_count, sampling_rate) ) { callback(statistics); } } private: static constexpr float update_interval { 0.1f }; uint64_t squared_sum { 0 }; uint32_t max_squared { 0 }; size_t count { 0 }; AudioStatistics statistics; void consume_audio_buffer(buffer_s16_t src) { auto src_p = src.p; const auto src_end = &src.p[src.count]; while(src_p < src_end) { const auto sample = *(src_p++); const uint64_t sample_squared = sample * sample; squared_sum += sample_squared; if( sample_squared > max_squared ) { max_squared = sample_squared; } } } bool update_stats(const size_t sample_count, const size_t sampling_rate) { count += sample_count; const size_t samples_per_update = sampling_rate * update_interval; if( count >= samples_per_update ) { const float squared_sum_f = squared_sum; const float max_squared_f = max_squared; const float squared_avg_f = squared_sum_f / count; statistics.rms_db = complex16_mag_squared_to_dbv_norm(squared_avg_f); statistics.max_db = complex16_mag_squared_to_dbv_norm(max_squared_f); statistics.count = count; squared_sum = 0; max_squared = 0; count = 0; return true; } else { return false; } } }; class ChannelDecimator { public: enum class DecimationFactor { By4, By8, By16, By32, }; ChannelDecimator( DecimationFactor f ) : decimation_factor { f } { } void set_decimation_factor(const DecimationFactor f) { decimation_factor = f; } buffer_c16_t execute(buffer_c8_t buffer) { auto decimated = execute_decimation(buffer); return decimated; } private: std::array work_baseband; const buffer_c16_t work_baseband_buffer { work_baseband.data(), work_baseband.size() }; const buffer_s16_t work_audio_buffer { (int16_t*)work_baseband.data(), sizeof(work_baseband) / sizeof(int16_t) }; //const bool fs_over_4_downconvert = true; dsp::decimate::TranslateByFSOver4AndDecimateBy2CIC3 translate; //dsp::decimate::DecimateBy2CIC3 cic_0; dsp::decimate::DecimateBy2CIC3 cic_1; dsp::decimate::DecimateBy2CIC3 cic_2; dsp::decimate::DecimateBy2CIC3 cic_3; dsp::decimate::DecimateBy2CIC3 cic_4; DecimationFactor decimation_factor { DecimationFactor::By32 }; buffer_c16_t execute_decimation(buffer_c8_t buffer) { /* 3.072MHz complex[2048], [-128, 127] * -> Shift by -fs/4 * -> 3rd order CIC: -0.1dB @ 0.028fs, -1dB @ 0.088fs, -60dB @ 0.468fs * -0.1dB @ 86kHz, -1dB @ 270kHz, -60dB @ 1.44MHz * -> gain of 256 * -> decimation by 2 * -> 1.544MHz complex[1024], [-32768, 32512] */ const auto stage_0_out = translate.execute(buffer, work_baseband_buffer); //if( fs_over_4_downconvert ) { // // TODO: //} else { // Won't work until cic_0 will accept input type of buffer_c8_t. // stage_0_out = cic_0.execute(buffer, work_baseband_buffer); //} /* 1.536MHz complex[1024], [-32768, 32512] * -> 3rd order CIC: -0.1dB @ 0.028fs, -1dB @ 0.088fs, -60dB @ 0.468fs * -0.1dB @ 43kHz, -1dB @ 136kHz, -60dB @ 723kHz * -> gain of 8 * -> decimation by 2 * -> 768kHz complex[512], [-8192, 8128] */ auto cic_1_out = cic_1.execute(stage_0_out, work_baseband_buffer); if( decimation_factor == DecimationFactor::By4 ) { return cic_1_out; } /* 768kHz complex[512], [-32768, 32512] * -> 3rd order CIC decimation by 2, gain of 1 * -> 384kHz complex[256], [-32768, 32512] */ auto cic_2_out = cic_2.execute(cic_1_out, work_baseband_buffer); if( decimation_factor == DecimationFactor::By8 ) { return cic_2_out; } /* 384kHz complex[256], [-32768, 32512] * -> 3rd order CIC decimation by 2, gain of 1 * -> 192kHz complex[128], [-32768, 32512] */ auto cic_3_out = cic_3.execute(cic_2_out, work_baseband_buffer); if( decimation_factor == DecimationFactor::By16 ) { return cic_3_out; } /* 192kHz complex[128], [-32768, 32512] * -> 3rd order CIC decimation by 2, gain of 1 * -> 96kHz complex[64], [-32768, 32512] */ auto cic_4_out = cic_4.execute(cic_3_out, work_baseband_buffer); return cic_4_out; } }; class FMSquelch { public: bool execute(buffer_s16_t audio) { // TODO: No hard-coded array size. std::array squelch_energy_buffer; const buffer_s16_t squelch_energy { squelch_energy_buffer.data(), squelch_energy_buffer.size() }; non_audio_hpf.execute(audio, squelch_energy); uint64_t max_squared = 0; for(const auto sample : squelch_energy_buffer) { const uint64_t sample_squared = sample * sample; if( sample_squared > max_squared ) { max_squared = sample_squared; } } return (max_squared < (threshold * threshold)); } private: static constexpr size_t N = 32; static constexpr int16_t threshold = 3072; // nyquist = 48000 / 2.0 // scipy.signal.iirdesign(wp=8000 / nyquist, ws= 4000 / nyquist, gpass=1, gstop=18, ftype='ellip') IIRBiquadFilter non_audio_hpf { { 0.51891061f, -0.95714180f, 0.51891061f }, { 1.0f , -0.79878302f, 0.43960231f } }; }; static volatile bool channel_spectrum_request_update { false }; static std::array channel_spectrum; static uint32_t channel_spectrum_sampling_rate { 0 }; static uint32_t channel_filter_pass_frequency { 0 }; static uint32_t channel_filter_stop_frequency { 0 }; class BasebandProcessor { public: virtual ~BasebandProcessor() = default; virtual void execute(buffer_c8_t buffer) = 0; protected: void feed_channel_stats(const buffer_c16_t channel) { channel_stats.feed( channel, [this](const ChannelStatistics statistics) { this->post_channel_stats_message(statistics); } ); } void feed_channel_spectrum(const buffer_c16_t channel) { channel_spectrum_decimator.feed( channel, [this](const buffer_c16_t data) { this->post_channel_spectrum_message(data); } ); } void fill_audio_buffer(const buffer_s16_t audio) { auto audio_buffer = audio::dma::tx_empty_buffer();; for(size_t i=0; i channel_spectrum_decimator { 4 }; ChannelStatsCollector channel_stats; ChannelStatisticsMessage channel_stats_message; AudioStatsCollector audio_stats; AudioStatisticsMessage audio_stats_message; void post_channel_stats_message(const ChannelStatistics statistics) { if( channel_stats_message.is_free() ) { channel_stats_message.statistics = statistics; shared_memory.application_queue.push(&channel_stats_message); } } void post_channel_spectrum_message(const buffer_c16_t data) { if( !channel_spectrum_request_update ) { channel_spectrum_request_update = true; std::copy(&data.p[0], &data.p[data.count], channel_spectrum.begin()); channel_spectrum_sampling_rate = data.sampling_rate; events_flag(EVT_MASK_SPECTRUM); } } void feed_audio_stats(const buffer_s16_t audio) { audio_stats.feed( audio, [this](const AudioStatistics statistics) { this->post_audio_stats_message(statistics); } ); } void post_audio_stats_message(const AudioStatistics statistics) { if( audio_stats_message.is_free() ) { audio_stats_message.statistics = statistics; shared_memory.application_queue.push(&audio_stats_message); } } }; class NarrowbandAMAudio : public BasebandProcessor { public: void execute(buffer_c8_t buffer) override { auto decimator_out = decimator.execute(buffer); const buffer_c16_t work_baseband_buffer { (complex16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; /* 96kHz complex[64] * -> FIR filter, 48kHz int16_t[32] */ auto channel = channel_filter.execute(decimator_out, work_baseband_buffer); channel_filter_pass_frequency = decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized; channel_filter_stop_frequency = decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized; // TODO: Feed channel_stats post-decimation data? feed_channel_stats(channel); feed_channel_spectrum(channel); const buffer_s16_t work_audio_buffer { (int16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; /* 48kHz complex[32] * -> AM demodulation * -> 48kHz int16_t[32] */ auto audio = demod.execute(channel, work_audio_buffer); audio_hpf.execute_in_place(audio); fill_audio_buffer(audio); } private: ChannelDecimator decimator { ChannelDecimator::DecimationFactor::By32 }; const fir_taps_real<64>& channel_filter_taps = taps_64_lp_031_070_tfilter; dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps }; dsp::demodulate::AM demod; IIRBiquadFilter audio_hpf { { 0.93346032f, -1.86687724f, 0.93346032f }, { 1.0f , -1.97730264f, 0.97773668f } }; }; class NarrowbandFMAudio : public BasebandProcessor { public: void execute(buffer_c8_t buffer) override { /* Called every 2048/3072000 second -- 1500Hz. */ auto decimator_out = decimator.execute(buffer); const buffer_c16_t work_baseband_buffer { (complex16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; /* 96kHz complex[64] * -> FIR filter, <6kHz (0.063fs) pass, gain 1.0 * -> 48kHz int16_t[32] */ auto channel = channel_filter.execute(decimator_out, work_baseband_buffer); channel_filter_pass_frequency = decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized; channel_filter_stop_frequency = decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized; // TODO: Feed channel_stats post-decimation data? feed_channel_stats(channel); feed_channel_spectrum(channel); const buffer_s16_t work_audio_buffer { (int16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; /* 48kHz complex[32] * -> FM demodulation * -> 48kHz int16_t[32] */ auto audio = demod.execute(channel, work_audio_buffer); static uint64_t audio_present_history = 0; const auto audio_present_now = squelch.execute(audio); audio_present_history = (audio_present_history << 1) | (audio_present_now ? 1 : 0); const bool audio_present = (audio_present_history != 0); if( !audio_present ) { // Zero audio buffer. for(size_t i=0; i& channel_filter_taps = taps_64_lp_042_078_tfilter; dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps }; dsp::demodulate::FM demod { 48000, 7500 }; IIRBiquadFilter audio_hpf { { 0.93346032f, -1.86687724f, 0.93346032f }, { 1.0f , -1.97730264f, 0.97773668f } }; FMSquelch squelch; }; class WidebandFMAudio : public BasebandProcessor { public: void execute(buffer_c8_t buffer) override { auto decimator_out = decimator.execute(buffer); const buffer_s16_t work_audio_buffer { (int16_t*)decimator_out.p, sizeof(*decimator_out.p) * decimator_out.count }; auto channel = decimator_out; // TODO: Feed channel_stats post-decimation data? feed_channel_stats(channel); //feed_channel_spectrum(channel); /* 768kHz complex[512] * -> FM demodulation * -> 768kHz int16_t[512] */ /* TODO: To improve adjacent channel rejection, implement complex channel filter: * pass < +/- 100kHz, stop > +/- 200kHz */ auto audio_oversampled = demod.execute(decimator_out, work_audio_buffer); /* 768kHz int16_t[512] * -> 4th order CIC decimation by 2, gain of 1 * -> 384kHz int16_t[256] */ auto audio_8fs = audio_dec_1.execute(audio_oversampled, work_audio_buffer); /* 384kHz int16_t[256] * -> 4th order CIC decimation by 2, gain of 1 * -> 192kHz int16_t[128] */ auto audio_4fs = audio_dec_2.execute(audio_8fs, work_audio_buffer); /* 192kHz int16_t[128] * -> 4th order CIC decimation by 2, gain of 1 * -> 96kHz int16_t[64] */ auto audio_2fs = audio_dec_3.execute(audio_4fs, work_audio_buffer); /* 96kHz int16_t[64] * -> FIR filter, <15kHz (0.156fs) pass, >19kHz (0.198fs) stop, gain of 1 * -> 48kHz int16_t[32] */ auto audio = audio_filter.execute(audio_2fs, work_audio_buffer); /* -> 48kHz int16_t[32] */ audio_hpf.execute_in_place(audio); fill_audio_buffer(audio); } private: ChannelDecimator decimator { ChannelDecimator::DecimationFactor::By4 }; //dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { taps_64_lp_031_070_tfilter }; dsp::demodulate::FM demod { 768000, 75000 }; dsp::decimate::DecimateBy2CIC4Real audio_dec_1; dsp::decimate::DecimateBy2CIC4Real audio_dec_2; dsp::decimate::DecimateBy2CIC4Real audio_dec_3; const fir_taps_real<64>& audio_filter_taps = taps_64_lp_156_198; dsp::decimate::FIR64AndDecimateBy2Real audio_filter { audio_filter_taps.taps }; IIRBiquadFilter audio_hpf { { 0.93346032f, -1.86687724f, 0.93346032f }, { 1.0f , -1.97730264f, 0.97773668f } }; }; class FSKProcessor : public BasebandProcessor { public: FSKProcessor( MessageHandlerMap& message_handlers ) : message_handlers(message_handlers) { message_handlers[Message::ID::FSKConfiguration] = [this](const Message* const p) { auto m = reinterpret_cast(p); this->configure(m->configuration); }; } ~FSKProcessor() { message_handlers[Message::ID::FSKConfiguration] = nullptr; } void configure(const FSKConfiguration new_configuration) { clock_recovery.configure(new_configuration.symbol_rate, 76800); access_code_correlator.configure( new_configuration.access_code, new_configuration.access_code_length, new_configuration.access_code_tolerance ); packet_builder.configure(new_configuration.packet_length); } void execute(buffer_c8_t buffer) override { /* 2.4576MHz, 2048 samples */ auto decimator_out = decimator.execute(buffer); /* 153.6kHz, 128 samples */ const buffer_c16_t work_baseband_buffer { (complex16_t*)decimator_out.p, decimator_out.count }; /* 153.6kHz complex[128] * -> FIR filter, 76.8kHz int16_t[64] */ auto channel = channel_filter.execute(decimator_out, work_baseband_buffer); channel_filter_pass_frequency = decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized; channel_filter_stop_frequency = decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized; /* 76.8kHz, 64 samples */ feed_channel_stats(channel); feed_channel_spectrum(channel); const auto symbol_handler_fn = [this](const float value) { const uint_fast8_t symbol = (value >= 0.0f) ? 1 : 0; const bool access_code_found = this->access_code_correlator.execute(symbol); this->consume_symbol(symbol, access_code_found); }; // 76.8k const buffer_s16_t work_demod_buffer { (int16_t*)decimator_out.p, decimator_out.count * sizeof(*decimator_out.p) / sizeof(int16_t) }; auto demodulated = demod.execute(channel, work_demod_buffer); i2s::i2s0::tx_mute(); for(size_t i=0; i& channel_filter_taps = taps_64_lp_031_070_tfilter; dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps }; dsp::demodulate::FM demod { 76800, 9600 * 2 }; ClockRecovery clock_recovery; AccessCodeCorrelator access_code_correlator; PacketBuilder packet_builder; FSKPacketMessage message; MessageHandlerMap& message_handlers; void consume_symbol( const uint_fast8_t symbol, const bool access_code_found ) { const auto payload_handler_fn = [this]( const std::bitset<256>& payload, const size_t bits_received ) { this->payload_handler(payload, bits_received); }; packet_builder.execute( symbol, access_code_found, payload_handler_fn ); } void payload_handler( const std::bitset<256>& payload, const size_t bits_received ) { if( message.is_free() ) { message.packet.payload = payload; message.packet.bits_received = bits_received; shared_memory.application_queue.push(&message); } } }; static BasebandProcessor* baseband_processor { nullptr }; static BasebandConfiguration baseband_configuration; static WORKING_AREA(baseband_thread_wa, 8192); static __attribute__((noreturn)) msg_t baseband_fn(void *arg) { (void)arg; chRegSetThreadName("baseband"); BasebandStatsCollector stats; BasebandStatisticsMessage message; while(true) { // TODO: Place correct sampling rate into buffer returned here: const auto buffer_tmp = baseband::dma::wait_for_rx_buffer(); const buffer_c8_t buffer { buffer_tmp.p, buffer_tmp.count, baseband_configuration.sampling_rate }; if( baseband_processor ) { baseband_processor->execute(buffer); } stats.process(buffer, [&message](const BasebandStatistics statistics) { if( message.is_free() ) { message.statistics = statistics; shared_memory.application_queue.push(&message); } } ); } } static WORKING_AREA(rssi_thread_wa, 128); static __attribute__((noreturn)) msg_t rssi_fn(void *arg) { (void)arg; chRegSetThreadName("rssi"); RSSIStatisticsCollector stats; RSSIStatisticsMessage message; while(true) { // TODO: Place correct sampling rate into buffer returned here: const auto buffer_tmp = rf::rssi::dma::wait_for_buffer(); const rf::rssi::buffer_t buffer { buffer_tmp.p, buffer_tmp.count, 400000 }; stats.process( buffer, [&message](const RSSIStatistics statistics) { if( message.is_free() ) { message.statistics = statistics; shared_memory.application_queue.push(&message); } } ); } } extern "C" { void __late_init(void) { /* After this call, scheduler, systick, heap, etc. are available. */ /* By doing chSysInit() here, it runs before C++ constructors, which may * require the heap. */ chSysInit(); } } static void init() { i2s::i2s0::configure( audio::i2s0_config_tx, audio::i2s0_config_rx, audio::i2s0_config_dma ); audio::dma::init(); audio::dma::configure(); audio::dma::enable(); i2s::i2s0::tx_start(); i2s::i2s0::rx_start(); LPC_CREG->DMAMUX = portapack::gpdma_mux; gpdma::controller.enable(); nvicEnableVector(DMA_IRQn, CORTEX_PRIORITY_MASK(LPC_DMA_IRQ_PRIORITY)); baseband::dma::init(); rf::rssi::init(); touch::dma::init(); chThdCreateStatic(baseband_thread_wa, sizeof(baseband_thread_wa), baseband_thread_priority, baseband_fn, nullptr ); chThdCreateStatic(rssi_thread_wa, sizeof(rssi_thread_wa), rssi_thread_priority, rssi_fn, nullptr ); } static inline float magnitude_squared(const std::complex c) { const auto r = c.real(); const auto r2 = r * r; const auto i = c.imag(); const auto i2 = i * i; return r2 + i2; } class EventDispatcher { public: MessageHandlerMap& message_handlers() { return message_map; } eventmask_t wait() { return chEvtWaitAny(ALL_EVENTS); } void dispatch(const eventmask_t events) { if( events & EVT_MASK_BASEBAND ) { handle_baseband_queue(); } if( events & EVT_MASK_SPECTRUM ) { handle_spectrum(); } } private: MessageHandlerMap message_map; ChannelSpectrumMessage spectrum_message; std::array spectrum_db; void handle_baseband_queue() { while( !shared_memory.baseband_queue.is_empty() ) { auto message = shared_memory.baseband_queue.pop(); auto& fn = message_map[message->id]; if( fn ) { fn(message); } message->state = Message::State::Free; } } void handle_spectrum() { if( channel_spectrum_request_update ) { /* Decimated buffer is full. Compute spectrum. */ std::array, 256> samples_swapped; fft_swap(channel_spectrum, samples_swapped); channel_spectrum_request_update = false; fft_c_preswapped(samples_swapped); if( spectrum_message.is_free() ) { for(size_t i=0; i .magnitude, or something more (less!) accurate. */ spectrum_message.spectrum.db = &spectrum_db; spectrum_message.spectrum.db_count = spectrum_db.size(); spectrum_message.spectrum.sampling_rate = channel_spectrum_sampling_rate; spectrum_message.spectrum.channel_filter_pass_frequency = channel_filter_pass_frequency; spectrum_message.spectrum.channel_filter_stop_frequency = channel_filter_stop_frequency; shared_memory.application_queue.push(&spectrum_message); } } } }; static void m0apptxevent_interrupt_enable() { nvicEnableVector(M0CORE_IRQn, CORTEX_PRIORITY_MASK(LPC43XX_M0APPTXEVENT_IRQ_PRIORITY)); } extern "C" { CH_IRQ_HANDLER(MAPP_IRQHandler) { CH_IRQ_PROLOGUE(); chSysLockFromIsr(); events_flag_isr(EVT_MASK_BASEBAND); chSysUnlockFromIsr(); creg::m0apptxevent::clear(); CH_IRQ_EPILOGUE(); } } //#define TEST_DSP 1 #if defined(TEST_DSP) #include "test_dsp.h" #endif static constexpr auto direction = baseband::Direction::Receive; int main(void) { #if defined(TEST_DSP) static TestResultsMessage test_results_message; test_results_message.results = test_dsp(); application_queue.push(&test_results_message); while(1); #else init(); events_initialize(chThdSelf()); m0apptxevent_interrupt_enable(); EventDispatcher event_dispatcher; auto& message_handlers = event_dispatcher.message_handlers(); message_handlers[Message::ID::BasebandConfiguration] = [&message_handlers](const Message* const p) { auto message = reinterpret_cast(p); if( message->configuration.mode != baseband_configuration.mode ) { // TODO: Timing problem around disabling DMA and nulling and deleting old processor auto old_p = baseband_processor; baseband_processor = nullptr; delete old_p; switch(message->configuration.mode) { case 0: baseband_processor = new NarrowbandAMAudio(); break; case 1: baseband_processor = new NarrowbandFMAudio(); break; case 2: baseband_processor = new WidebandFMAudio(); break; case 3: baseband_processor = new FSKProcessor(message_handlers); break; default: break; } if( baseband_processor ) { if( direction == baseband::Direction::Receive ) { rf::rssi::start(); } baseband::dma::enable(direction); } else { baseband::dma::disable(); rf::rssi::stop(); } } baseband_configuration = message->configuration; }; /* TODO: Ensure DMAs are configured to point at first LLI in chain. */ if( direction == baseband::Direction::Receive ) { rf::rssi::dma::allocate(4, 400); } touch::dma::allocate(); touch::dma::enable(); const auto baseband_buffer = new std::array(); baseband::dma::configure( baseband_buffer->data(), direction ); //baseband::dma::allocate(4, 2048); while(true) { const auto events = event_dispatcher.wait(); event_dispatcher.dispatch(events); } #endif return 0; }