/* * Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2017 Furrtek * Early 2023 joyel24 added meteomodem M20 support * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "sonde_packet.hpp" #include "string_format.hpp" #include // #include namespace sonde { static uint8_t calibytes[51 * 16]; // need these vars to survive static uint8_t calfrchk[51]; // so subframes are preserved while populated // Defines for Vaisala RS41, from https://github.com/rs1729/RS/blob/master/rs41/rs41sg.c #define MASK_LEN 64 // Following values include the 4 bytes less shift, consumed in detecting the header on proc_sonde #define block_status 0x35 // 0x039 // 40 bytes #define block_gpspos 0x10E // 0x112 // 21 bytes #define block_meas 0x61 // 0x65 // 42 bytes #define pos_FrameNb 0x37 // 0x03B // 2 byte #define pos_SondeID 0x39 // 0x03D // 8 byte #define pos_Voltage 0x041 // 0x045 // 3 bytes (but first one is the important one) voltage x 10 ie: 26 = 2.6v #define pos_CalData 0x04E // 0x052 // 1 byte, counter 0x00..0x32 #define pos_temp 0x063 // 0x067 // 3 bytes (uint24_t) #define pos_GPSecefX 0x110 // 0x114 // 4 byte #define pos_GPSecefY 0x114 // 0x118 // 4 byte (not actually used since Y and Z are following X, and grabbed in that same loop) #define pos_GPSecefZ 0x118 // 0x11C // 4 byte (same as Y) #define PI 3.1415926535897932384626433832795 // 3.1416 //(3.1415926535897932384626433832795) Packet::Packet( const baseband::Packet& packet, const Type type) : packet_{packet}, decoder_{packet_}, reader_bi_m{decoder_}, type_{type} { if (type_ == Type::Meteomodem_unknown) { // Right now we're just sure that the sync is from a Meteomodem sonde, differentiate between models now const uint32_t id_byte = reader_bi_m.read(0 * 8, 16); if (id_byte == 0x649F) type_ = Type::Meteomodem_M10; else if (id_byte == 0x648F) type_ = Type::Meteomodem_M2K2; else if (id_byte == 0x4520) // https://raw.githubusercontent.com/projecthorus/radiosonde_auto_rx/master/demod/mod/m20mod.c type_ = Type::Meteomodem_M20; } } size_t Packet::length() const { return decoder_.symbols_count(); } Timestamp Packet::received_at() const { return packet_.timestamp(); } Packet::Type Packet::type() const { return type_; } // euquiq here: // RS41SG 320 bits header, 320bytes frame (or more if it is an "extended frame") // The raw data is xor-scrambled with the values in the 64 bytes vaisala_mask (see.hpp) // from 0x008 to 0x037 (48 bytes reed-solomon error correction data) uint8_t Packet::vaisala_descramble(const uint32_t pos) const { // vaisala_descramble(const uint32_t pos) const { // packet_[i]; its a bit; packet_.size the total (should be 2560 bits) uint8_t value = 0; for (uint8_t i = 0; i < 8; i++) value = (value << 1) | packet_[(pos * 8) + (7 - i)]; // get the byte from the bits collection // packetReader reader { packet_ }; //This works just as above. // value = reader.read(pos * 8,8); // shift pos because first 4 bytes are consumed by proc_sonde in finding the vaisala signature uint32_t mask_pos = pos + 4; value = value ^ vaisala_mask[mask_pos % MASK_LEN]; // descramble with the xor pseudorandom table return value; }; GPS_data Packet::get_GPS_data() const { GPS_data result; if ((type_ == Type::Meteomodem_M10) || (type_ == Type::Meteomodem_M2K2)) { result.alt = (reader_bi_m.read(22 * 8, 32) / 1000) - 48; result.lat = reader_bi_m.read(14 * 8, 32) / ((1ULL << 32) / 360.0); result.lon = reader_bi_m.read(18 * 8, 32) / ((1ULL << 32) / 360.0); } else if (type_ == Type::Meteomodem_M20) { result.alt = reader_bi_m.read(8 * 8, 24) / 100.0; // <| result.lat = reader_bi_m.read(28 * 8, 32) / 1000000.0; // <| Inspired by https://raw.githubusercontent.com/projecthorus/radiosonde_auto_rx/master/demod/mod/m20mod.c result.lon = reader_bi_m.read(32 * 8, 32) / 1000000.0; // <| } else if (type_ == Type::Vaisala_RS41_SG) { uint8_t XYZ_bytes[4]; int32_t XYZ; // 32bit double_t X[3]; for (int32_t k = 0; k < 3; k++) { // Get X,Y,Z ECEF position from GPS for (int32_t i = 0; i < 4; i++) // each one is 4 bytes (32 bits) XYZ_bytes[i] = vaisala_descramble(pos_GPSecefX + (4 * k) + i); memcpy(&XYZ, XYZ_bytes, 4); X[k] = XYZ / 100.0; } double_t a = 6378137.0; double_t b = 6356752.31424518; double_t e = sqrt((a * a - b * b) / (a * a)); double_t ee = sqrt((a * a - b * b) / (b * b)); double_t lam = atan2(X[1], X[0]); double_t p = sqrt(X[0] * X[0] + X[1] * X[1]); double_t t = atan2(X[2] * a, p * b); double_t phi = atan2(X[2] + ee * ee * b * sin(t) * sin(t) * sin(t), p - e * e * a * cos(t) * cos(t) * cos(t)); double_t R = a / sqrt(1 - e * e * sin(phi) * sin(phi)); result.alt = p / cos(phi) - R; result.lat = phi * 180 / PI; result.lon = lam * 180 / PI; } return result; } uint32_t Packet::battery_voltage() const { if (type_ == Type::Meteomodem_M10) return (reader_bi_m.read(69 * 8, 8) + (reader_bi_m.read(70 * 8, 8) << 8)) * 1000 / 150; else if (type_ == Type::Meteomodem_M20) { return 0; // NOT SUPPPORTED YET } else if (type_ == Type::Meteomodem_M2K2) return reader_bi_m.read(69 * 8, 8) * 66; // Actually 65.8 else if (type_ == Type::Vaisala_RS41_SG) { uint32_t voltage = vaisala_descramble(pos_Voltage) * 100; // byte 69 = voltage * 10 (check if this value needs to be multiplied) return voltage; } else { return 0; // Unknown } } uint32_t Packet::frame() const { if (type_ == Type::Vaisala_RS41_SG) { uint32_t frame_number = vaisala_descramble(pos_FrameNb) | (vaisala_descramble(pos_FrameNb + 1) << 8); return frame_number; } else { return 0; // Unknown } } temp_humid Packet::get_temp_humid() const { temp_humid result; result.humid = 0; result.temp = 0; if (type_ == Type::Meteomodem_M10) { // https://github.com/projecthorus/radiosonde_auto_rx/blob/master/demod/mod/m10mod.c // temp: uint16_t ADC_Ti_raw = (reader_bi_m.read(0x49 * 8, 8) << 8) | reader_bi_m.read(0x48 * 8, 8) << 8; // int.temp.diode, ref: 4095->1.5V if (ADC_Ti_raw != 0) { // internal float vti, ti; // INCH1A (temp.diode), slau144 vti = ADC_Ti_raw / 4095.0 * 1.5; // V_REF+ = 1.5V, no calibration ti = (vti - 0.986) / 0.00355; // 0.986/0.00355=277.75, 1.5/4095/0.00355=0.1032 result.temp = ti; } // NTC - Thermistor Shibaura PB5 - 41E float p0 = 1.07303516e-03, p1 = 2.41296733e-04, p2 = 2.26744154e-06, p3 = 6.52855181e-08; // T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 ) // range/scale 0, 1, 2: // M10-pcb float Rs_T[3] = {12.1e3, 36.5e3, 475.0e3}; // bias/series float Rp[3] = {1e20, 330.0e3, 2000.0e3}; // parallel, Rp[0]=inf uint8_t scT; // {0,1,2}, range/scale voltage divider uint16_t ADC_RT; // ADC12 P6.7(A7) , adr_0377h,adr_0376h // uint16_t Tcal[2]; // adr_1000h[scT*4] float adc_max = 4095.0; // ADC12 float x, R; float T = 0; // T/Kelvin scT = reader_bi_m.read(0x3E * 8, 8); // adr_0455h ADC_RT = (reader_bi_m.read(0x40 * 8, 8) << 8) | reader_bi_m.read(0x3F * 8, 8); if (ADC_RT != 0) { ADC_RT -= 0xA000; // Tcal[0] = (reader_bi_m.read(0x42 * 8, 8) << 8) | reader_bi_m.read(0x41 * 8, 8); // Tcal[1] = (reader_bi_m.read(0x44 * 8, 8) << 8) | reader_bi_m.read(0x43 * 8, 8); x = (adc_max - ADC_RT) / ADC_RT; // (Vcc-Vout)/Vout if (scT < 3) R = Rs_T[scT] / (x - Rs_T[scT] / Rp[scT]); else R = -1; if (R > 0) T = 1 / (p0 + p1 * log(R) + p2 * log(R) * log(R) + p3 * log(R) * log(R) * log(R)); result.temp = T - 273.15; } // humidity: // get count rh: float TBCCR1 = (reader_bi_m.read(0x35 * 8, 8) | (reader_bi_m.read(0x36 * 8, 8) << 8) | (reader_bi_m.read(0x37 * 8, 8) << 16)) / 1000.0; // get count 55: float TBCREF = (reader_bi_m.read(0x32 * 8, 8) | (reader_bi_m.read(0x33 * 8, 8) << 8) | (reader_bi_m.read(0x34 * 8, 8) << 16)) / 1000.0; if (TBCREF != 0) { float cRHc55 = TBCCR1 / TBCREF; //;get_count_RH(gpx) / get_count_55(gpx); // CalRef 55%RH , T=20C ? // get_Tntc2: --unused. // float Rs = 22.1e3; // P5.6=Vcc // float R25 = 2.2e3; // float b = 3650.0; // B/Kelvin // float T25 = 25.0 + 273.15; // T0=25C, R0=R25=5k // -> Steinhart-Hart coefficients (polyfit): // cRHc55_RH: // float TH = get_Tntc2(gpx); --unused float rh = (cRHc55 - 0.8955) / 0.002; // UPSI linear transfer function // temperature compensation float T0 = 0.0, T1 = -30.0; // T/C if (result.temp < T0) rh += T0 - result.temp / 5.5; // approx/empirical if (result.temp < T1) rh *= 1.0 + (T1 - result.temp) / 75.0; // approx/empirical if (rh < 0.0) rh = 0.0; if (rh > 100.0) rh = 100.0; result.humid = rh; } } if (type_ == Type::Vaisala_RS41_SG && crc_ok_RS41()) // Only process if packet is healthy { // memset(calfrchk, 0, 51); // is this necessary ? only if the sondeID changes (new sonde) // original code from https://github.com/rs1729/RS/blob/master/rs41/rs41ptu.c float Rf1, // ref-resistor f1 (750 Ohm) Rf2, // ref-resistor f2 (1100 Ohm) co1[3], // { -243.911 , 0.187654 , 8.2e-06 } calT1[3], // calibration T1 co2[3], // { -243.911 , 0.187654 , 8.2e-06 } calT2[3], // calibration T2-Hum calH[2]; // calibration Hum uint32_t meas[12], i; //-------------- get_CalData //-------------- populate calibytes (from getFrameConf) uint8_t calfr = vaisala_descramble(pos_CalData); // get subframe #slot for (i = 0; i < 16; i++) // Load subrfame calibration page (16 bytes) into #slot calibytes[calfr * 16 + i] = vaisala_descramble(pos_CalData + 1 + i); // pos = pos_CalData + 1 + i ; vaisala_descramble(pos) calfrchk[calfr] = 1; // flag this #slot as populated memcpy(&Rf1, calibytes + 61, 4); // 0x03*0x10+13 memcpy(&Rf2, calibytes + 65, 4); // 0x04*0x10+ 1 memcpy(co1 + 0, calibytes + 77, 4); // 0x04*0x10+13 memcpy(co1 + 1, calibytes + 81, 4); // 0x05*0x10+ 1 memcpy(co1 + 2, calibytes + 85, 4); // 0x05*0x10+ 5 memcpy(calT1 + 0, calibytes + 89, 4); // 0x05*0x10+ 9 memcpy(calT1 + 1, calibytes + 93, 4); // 0x05*0x10+13 memcpy(calT1 + 2, calibytes + 97, 4); // 0x06*0x10+ 1 memcpy(calH + 0, calibytes + 117, 4); // 0x07*0x10+ 5 memcpy(calH + 1, calibytes + 121, 4); // 0x07*0x10+ 9 memcpy(co2 + 0, calibytes + 293, 4); // 0x12*0x10+ 5 memcpy(co2 + 1, calibytes + 297, 4); // 0x12*0x10+ 9 memcpy(co2 + 2, calibytes + 301, 4); // 0x12*0x10+13 memcpy(calT2 + 0, calibytes + 305, 4); // 0x13*0x10+ 1 memcpy(calT2 + 1, calibytes + 309, 4); // 0x13*0x10+ 5 memcpy(calT2 + 2, calibytes + 313, 4); // 0x13*0x10+ 9 //--------------------------------------- for (i = 0; i < 12; i++) meas[i] = vaisala_descramble(pos_temp + (3 * i)) | (vaisala_descramble(pos_temp + (3 * i) + 1) << 8) | (vaisala_descramble(pos_temp + (3 * i) + 2) << 16); //----Check if necessary calibytes are already present for calculation if (calfrchk[0x03] && calfrchk[0x04] && calfrchk[0x04] && calfrchk[0x05] && calfrchk[0x05] && calfrchk[0x06]) // Calibites OK for Temperature { //----------get_Tc------------------------ float* p = co1; float* c = calT1; float g = (float)(meas[2] - meas[1]) / (Rf2 - Rf1), // gain Rb = (meas[1] * Rf2 - meas[2] * Rf1) / (float)(meas[2] - meas[1]), // ofs Rc = meas[0] / g - Rb, R = Rc * c[0], T = (p[0] + p[1] * R + p[2] * R * R + c[1]) * (1.0 + c[2]); result.temp = T; } if (calfrchk[0x07]) { //----------get_RH------------------------ float a0 = 7.5; // empirical float a1 = 350.0 / calH[0]; // empirical float fh = (meas[3] - meas[4]) / (float)(meas[5] - meas[4]); float rh = 100.0 * (a1 * fh - a0); float T0 = 0.0, T1 = -25.0; // T/C rh += T0 - result.temp / 5.5; // empir. temperature compensation if (result.temp < T1) rh *= 1.0 + (T1 - result.temp) / 90.0; // empir. temperature compensation if (rh < 0.0) rh = 0.0; if (rh > 100.0) rh = 100.0; if (result.temp < -273.0) rh = -1.0; result.humid = rh; } } return result; } std::string Packet::type_string() const { switch (type_) { case Type::Unknown: return "Unknown"; case Type::Meteomodem_unknown: return "Meteomodem ???"; case Type::Meteomodem_M10: return "Meteomodem M10"; case Type::Meteomodem_M20: return "Meteomodem M20"; case Type::Meteomodem_M2K2: return "Meteomodem M2K2"; case Type::Vaisala_RS41_SG: return "Vaisala RS41-SG"; default: return "? 0x" + symbols_formatted().data.substr(0, 6); } } std::string Packet::serial_number() const { if (type_ == Type::Meteomodem_M10) { // See https://github.com/rs1729/RS/blob/master/m10/m10x.c line 606 // Starting at byte #93: 00000000 11111111 22222222 33333333 44444444 // CCCC AAAABBBB // 44444444 33333333 // DDDEEEEE EEEEEEEE return to_string_hex(reader_bi_m.read(93 * 8 + 16, 4), 1) + to_string_dec_uint(reader_bi_m.read(93 * 8 + 20, 4), 2, '0') + " " + to_string_hex(reader_bi_m.read(93 * 8 + 4, 4), 1) + " " + to_string_dec_uint(reader_bi_m.read(93 * 8 + 24, 3), 1) + to_string_dec_uint(reader_bi_m.read(93 * 8 + 27, 13), 4, '0'); } else if (type_ == Type::Vaisala_RS41_SG) { std::string serial_id = ""; uint8_t achar; for (uint8_t i = 0; i < 8; i++) { // euquiq: Serial ID is 8 bytes long, each byte a char achar = vaisala_descramble(pos_SondeID + i); if (achar < 32 || achar > 126) return "?"; // Maybe there are ids with less than 8 bytes and this is not OK. serial_id += (char)achar; } return serial_id; } else { return "?"; } } FormattedSymbols Packet::symbols_formatted() const { if (type_ == Type::Vaisala_RS41_SG) { // Euquiq: now we distinguish different types uint32_t bytes = packet_.size() / 8; // Need the byte amount, which if full, it SHOULD be 320 size() should return 2560 std::string hex_data; std::string hex_error; hex_data.reserve(bytes * 2); // 2 hexa chars per byte hex_error.reserve(1); for (uint32_t i = 0; i < bytes; i++) // log will show the packet starting on the last 4 bytes from signature 93DF1A60 hex_data += to_string_hex(vaisala_descramble(i), 2); return {hex_data, hex_error}; } else { return format_symbols(decoder_); } } bool Packet::crc_ok() const { switch (type_) { case Type::Meteomodem_M10: return crc_ok_M10(); case Type::Vaisala_RS41_SG: return crc_ok_RS41(); default: return true; // euquiq: it was false, but if no crc routine, then no way to check } } // each data block has a 2 byte header, data, and 2 byte tail: // 1st byte: block ID // 2nd byte: data length (without header or tail) // // 2 bytes CRC16 over the data. bool Packet::crc_ok_RS41() const // check CRC for the data blocks we need { if (!crc16rs41(block_status)) return false; if (!crc16rs41(block_gpspos)) return false; if (!crc16rs41(block_meas)) return false; return true; } // Checks CRC16 on a RS41 field: bool Packet::crc16rs41(uint32_t field_start) const { int crc16poly = 0x1021; int rem = 0xFFFF, b, j; int xbyte; uint32_t pos = field_start + 1; uint8_t length = vaisala_descramble(pos); if (pos + length + 2 > packet_.size() / 8) return false; // Out of packet! for (b = 0; b < length; b++) { pos++; xbyte = vaisala_descramble(pos); rem = rem ^ (xbyte << 8); for (j = 0; j < 8; j++) { if (rem & 0x8000) { rem = (rem << 1) ^ crc16poly; } else { rem = (rem << 1); } rem &= 0xFFFF; } } // Check calculated CRC against packet's one pos++; int crcok = vaisala_descramble(pos) | (vaisala_descramble(pos + 1) << 8); if (crcok != rem) return false; return true; } bool Packet::crc_ok_M10() const { uint16_t cs{0}; uint32_t c0, c1, t, t6, t7, s, b; for (size_t i = 0; i < packet_.size(); i++) { b = packet_[i]; c1 = cs & 0xFF; // B b = (b >> 1) | ((b & 1) << 7); b ^= (b >> 2) & 0xFF; // A1 t6 = (cs & 1) ^ ((cs >> 2) & 1) ^ ((cs >> 4) & 1); t7 = ((cs >> 1) & 1) ^ ((cs >> 3) & 1) ^ ((cs >> 5) & 1); t = (cs & 0x3F) | (t6 << 6) | (t7 << 7); // A2 s = (cs >> 7) & 0xFF; s ^= (s >> 2) & 0xFF; c0 = b ^ t ^ s; cs = ((c1 << 8) | c0) & 0xFFFF; } return ((cs & 0xFFFF) == ((packet_[0x63] << 8) | (packet_[0x63 + 1]))); } } /* namespace sonde */