/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * Copyright (C) 2023 gullradriel, Nilorea Studio Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "freqman.hpp" #include using option_t = std::pair; using options_t = std::vector; // TODO: Consolidate with receiver_model. // These definitions are spread all over and stiched together with indices. options_t freqman_entry_modulations = { {"AM", 0}, {"NFM", 1}, {"WFM", 2}, {"SPEC", 3}}; options_t freqman_entry_bandwidths[4] = { {// AM {"DSB 9k", 0}, {"DSB 6k", 1}, {"USB+3k", 2}, {"LSB-3k", 3}, {"CW", 4}}, {// NFM {"8k5", 0}, {"11k", 1}, {"16k", 2}}, { // WFM {"40k", 2}, {"180k", 1}, {"200k", 0}, }, { // SPEC {"8k5", 8500}, {"11k", 11000}, {"16k", 16000}, {"25k", 25000}, {"50k", 50000}, {"100k", 100000}, {"250k", 250000}, {"500k", 500000}, /* Previous Limit bandwith Option with perfect micro SD write .C16 format operaton.*/ {"600k", 600000}, /* That extended option is still possible to record with FW version Mayhem v1.41 (< 2,5MB/sec) */ {"650k", 650000}, {"750k", 750000}, /* From this BW onwards, the LCD is ok, but the recorded file is decimated, (not real file size) */ {"1100k", 1100000}, {"1750k", 1750000}, {"2000k", 2000000}, {"2500k", 2500000}, {"2750k", 2750000}, // That is our max Capture option, to keep using later / 8 decimation (22Mhz sampling ADC) }}; options_t freqman_entry_steps = { {"0.1kHz ", 100}, {"1kHz ", 1000}, {"5kHz (SA AM)", 5000}, {"6.25kHz(NFM)", 6250}, {"8.33kHz(AIR)", 8330}, {"9kHz (EU AM)", 9000}, {"10kHz(US AM)", 10000}, {"12.5kHz(NFM)", 12500}, {"15kHz (HFM)", 15000}, {"25kHz (N1)", 25000}, {"30kHz (OIRT)", 30000}, {"50kHz (FM1)", 50000}, {"100kHz (FM2)", 100000}, {"250kHz (N2)", 250000}, {"500kHz (WFM)", 500000}, {"1MHz ", 1000000}}; options_t freqman_entry_steps_short = { {"0.1kHz", 100}, {"1kHz", 1000}, {"5kHz", 5000}, {"6.25kHz", 6250}, {"8.33kHz", 8330}, {"9kHz", 9000}, {"10kHz", 10000}, {"12.5kHz", 12500}, {"15kHz", 15000}, {"25kHz", 25000}, {"30kHz", 30000}, {"50kHz", 50000}, {"100kHz", 100000}, {"250kHz", 250000}, {"500kHz", 500000}, {"1MHz", 1000000}}; bool load_freqman_file(std::string& file_stem, freqman_db& db, bool load_freqs, bool load_ranges, bool load_hamradios, uint8_t max_num_freqs) { // swap with empty vector to ensure memory is immediately released std::vector().swap(db); File freqman_file{}; size_t length = 0, n = 0, file_position = 0; char* pos = NULL; char* line_start = NULL; char* line_end = NULL; std::string description{NULL}; rf::Frequency frequency_a = 0, frequency_b = 0; char file_data[FREQMAN_READ_BUF_SIZE + 1] = {0}; freqman_entry_type type = NOTYPE; freqman_index_t modulation = -1; freqman_index_t bandwidth = -1; freqman_index_t step = -1; freqman_index_t tone = -1; uint32_t tone_freq; char c; auto result = freqman_file.open("FREQMAN/" + file_stem + ".TXT"); if (result.is_valid()) return false; while (1) { // Read a FREQMAN_READ_BUF_SIZE block from file freqman_file.seek(file_position); memset(file_data, 0, FREQMAN_READ_BUF_SIZE + 1); auto read_size = freqman_file.read(file_data, FREQMAN_READ_BUF_SIZE); if (read_size.is_error()) return false; // Read error file_position += FREQMAN_READ_BUF_SIZE; // Reset line_start to beginning of buffer line_start = file_data; // If EOF reached, insert 0x0A after, in case the last line doesn't have a C/R if (read_size.value() < FREQMAN_READ_BUF_SIZE) *(line_start + read_size.value()) = 0x0A; // Look for complete lines in buffer while ((line_end = strstr(line_start, "\x0A"))) { *line_end = 0; // Stop strstr() searches below at EOL modulation = -1; bandwidth = -1; step = -1; tone = -1; type = NOTYPE; frequency_a = frequency_b = 0; // Read frequency pos = strstr(line_start, "f="); if (pos) { pos += 2; frequency_a = strtoll(pos, nullptr, 10); type = SINGLE; } else { // ...or range pos = strstr(line_start, "a="); if (pos) { pos += 2; frequency_a = strtoll(pos, nullptr, 10); type = RANGE; pos = strstr(line_start, "b="); if (pos) { pos += 2; frequency_b = strtoll(pos, nullptr, 10); } else frequency_b = 0; } else { // ... or hamradio pos = strstr(line_start, "r="); if (pos) { pos += 2; frequency_a = strtoll(pos, nullptr, 10); type = HAMRADIO; pos = strstr(line_start, "t="); if (pos) { pos += 2; frequency_b = strtoll(pos, nullptr, 10); } else frequency_b = frequency_a; } else frequency_a = 0; } } // modulation if any pos = strstr(line_start, "m="); if (pos) { pos += 2; modulation = freqman_entry_get_modulation_from_str(pos); } // bandwidth if any pos = strstr(line_start, "bw="); if (pos) { pos += 3; bandwidth = freqman_entry_get_bandwidth_from_str(modulation, pos); } // step if any pos = strstr(line_start, "s="); if (pos) { pos += 2; step = freqman_entry_get_step_from_str_short(pos); } // ctcss tone if any pos = strstr(line_start, "c="); if (pos) { pos += 2; // find decimal point and replace with 0 if there is one, for strtoll length = strcspn(pos, ".,\x0A"); if (pos + length <= line_end) { c = *(pos + length); *(pos + length) = 0; // ASCII Hz to integer Hz x 100 tone_freq = strtoll(pos, nullptr, 10) * 100; // stuff saved character back into string in case it was not a decimal point *(pos + length) = c; // now get first digit after decimal point (10ths of Hz) pos += length + 1; if (c == '.' && *pos >= '0' && *pos <= '9') tone_freq += (*pos - '0') * 10; // convert tone_freq (100x the freq in Hz) to a tone_key index tone = tone_key_index_by_value(tone_freq); } } // Read description until , or LF pos = strstr(line_start, "d="); if (pos) { pos += 2; length = std::min(strcspn(pos, ",\x0A"), (size_t)FREQMAN_DESC_MAX_LEN); description = string(pos, length); description.shrink_to_fit(); } if ((type == SINGLE && load_freqs) || (type == RANGE && load_ranges) || (type == HAMRADIO && load_hamradios)) { freqman_entry entry = {frequency_a, frequency_b, std::move(description), type, modulation, bandwidth, step, tone}; db.emplace_back(entry); n++; if (n > max_num_freqs) return true; } line_start = line_end + 1; if (line_start - file_data >= FREQMAN_READ_BUF_SIZE) break; } if (read_size.value() != FREQMAN_READ_BUF_SIZE) break; // End of file // Restart at beginning of last incomplete line file_position -= (file_data + FREQMAN_READ_BUF_SIZE - line_start); } /* populate implicitly specified modulation / bandwidth */ if (db.size() > 2) { modulation = db[0].modulation; bandwidth = db[0].bandwidth; for (unsigned int it = 1; it < db.size(); it++) { if (db[it].modulation < 0) { db[it].modulation = modulation; } else { modulation = db[it].modulation; } if (db[it].bandwidth < 0) { db[it].bandwidth = bandwidth; } else { modulation = db[it].bandwidth; } } } db.shrink_to_fit(); return true; } bool get_freq_string(freqman_entry& entry, std::string& item_string) { rf::Frequency frequency_a, frequency_b; frequency_a = entry.frequency_a; if (entry.type == SINGLE) { // Single item_string = "f=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0'); } else if (entry.type == RANGE) { // Range frequency_b = entry.frequency_b; item_string = "a=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0'); item_string += ",b=" + to_string_dec_uint(frequency_b / 1000) + to_string_dec_uint(frequency_b % 1000UL, 3, '0'); if (entry.step >= 0) { item_string += ",s=" + freqman_entry_get_step_string_short(entry.step); } } else if (entry.type == HAMRADIO) { frequency_b = entry.frequency_b; item_string = "r=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0'); item_string += ",t=" + to_string_dec_uint(frequency_b / 1000) + to_string_dec_uint(frequency_b % 1000UL, 3, '0'); if (entry.tone >= 0) { item_string += ",c=" + tone_key_value_string(entry.tone); } } if (entry.modulation >= 0 && (unsigned)entry.modulation < freqman_entry_modulations.size()) { item_string += ",m=" + freqman_entry_get_modulation_string(entry.modulation); if (entry.bandwidth >= 0 && (unsigned)entry.bandwidth < freqman_entry_bandwidths[entry.modulation].size()) { item_string += ",bw=" + freqman_entry_get_bandwidth_string(entry.modulation, entry.bandwidth); } } if (entry.description.size()) item_string += ",d=" + entry.description; return true; } bool delete_freqman_file(std::string& file_stem) { File freqman_file; std::string freq_file_path = "/FREQMAN/" + file_stem + ".TXT"; delete_file(freq_file_path); return false; } bool save_freqman_file(std::string& file_stem, freqman_db& db) { File freqman_file; std::string freq_file_path = "/FREQMAN/" + file_stem + ".TXT"; delete_file(freq_file_path); auto result = freqman_file.create(freq_file_path); if (!result.is_valid()) { for (size_t n = 0; n < db.size(); n++) { std::string line; get_freq_string(db[n], line); freqman_file.write_line(line); } return true; } return false; } bool create_freqman_file(std::string& file_stem, File& freqman_file) { auto result = freqman_file.create("FREQMAN/" + file_stem + ".TXT"); if (result.is_valid()) return false; return true; } std::string freqman_item_string(freqman_entry& entry, size_t max_length) { std::string item_string; switch (entry.type) { case SINGLE: item_string = to_string_short_freq(entry.frequency_a) + "M: " + entry.description; break; case RANGE: item_string = "R: " + entry.description; break; case HAMRADIO: item_string = "H: " + entry.description; break; default: item_string = "!UNKNOW TYPE " + entry.description; break; } if (item_string.size() > max_length) return item_string.substr(0, max_length - 3) + "..."; return item_string; } void freqman_set_modulation_option(OptionsField& option) { option.set_options(freqman_entry_modulations); } void freqman_set_bandwidth_option(freqman_index_t modulation, OptionsField& option) { option.set_options(freqman_entry_bandwidths[modulation]); } void freqman_set_step_option(OptionsField& option) { option.set_options(freqman_entry_steps); } void freqman_set_step_option_short(OptionsField& option) { option.set_options(freqman_entry_steps_short); } std::string freqman_entry_get_modulation_string(freqman_index_t modulation) { if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) { return std::string(""); // unknown modulation } return freqman_entry_modulations[modulation].first; } std::string freqman_entry_get_bandwidth_string(freqman_index_t modulation, freqman_index_t bandwidth) { if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) { return std::string(""); // unknown modulation } if (bandwidth < 0 || (unsigned)bandwidth > freqman_entry_bandwidths[modulation].size()) { return std::string(""); // unknown modulation } return freqman_entry_bandwidths[modulation][bandwidth].first; } std::string freqman_entry_get_step_string(freqman_index_t step) { if (step < 0 || (unsigned)step >= freqman_entry_steps.size()) { return std::string(""); // unknown modulation } return freqman_entry_steps[step].first; } std::string freqman_entry_get_step_string_short(freqman_index_t step) { if (step < 0 || (unsigned)step >= freqman_entry_steps_short.size()) { return std::string(""); // unknown modulation } return freqman_entry_steps_short[step].first; } int32_t freqman_entry_get_modulation_value(freqman_index_t modulation) { if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) { return -1; // unknown modulation } return freqman_entry_modulations[modulation].second; } int32_t freqman_entry_get_bandwidth_value(freqman_index_t modulation, freqman_index_t bandwidth) { if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) { return -1; // unknown modulation } if (bandwidth < 0 || (unsigned)bandwidth > freqman_entry_bandwidths[modulation].size()) { return -1; // unknown bandwidth for modulation } return freqman_entry_bandwidths[modulation][bandwidth].second; } int32_t freqman_entry_get_step_value(freqman_index_t step) { if (step < 0 || (unsigned)step >= freqman_entry_steps.size()) { return -1; // unknown modulation } return freqman_entry_steps[step].second; } freqman_index_t freqman_entry_get_modulation_from_str(char* str) { if (!str) return -1; for (freqman_index_t index = 0; (unsigned)index < freqman_entry_modulations.size(); index++) { if (strncmp(freqman_entry_modulations[index].first.c_str(), str, freqman_entry_modulations[index].first.size()) == 0) return index; } return -1; } freqman_index_t freqman_entry_get_bandwidth_from_str(freqman_index_t modulation, char* str) { if (!str) return -1; if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) return -1; for (freqman_index_t index = 0; (unsigned)index < freqman_entry_bandwidths[modulation].size(); index++) { if (strncmp(freqman_entry_bandwidths[modulation][index].first.c_str(), str, freqman_entry_bandwidths[modulation][index].first.size()) == 0) return index; } return -1; } freqman_index_t freqman_entry_get_step_from_str(char* str) { if (!str) return -1; for (freqman_index_t index = 0; (unsigned)index < freqman_entry_steps.size(); index++) { if (strncmp(freqman_entry_steps[index].first.c_str(), str, freqman_entry_steps[index].first.size()) == 0) return index; } return -1; } freqman_index_t freqman_entry_get_step_from_str_short(char* str) { if (!str) return -1; for (freqman_index_t index = 0; (unsigned)index < freqman_entry_steps_short.size(); index++) { if (strncmp(freqman_entry_steps_short[index].first.c_str(), str, freqman_entry_steps_short[index].first.size()) == 0) return index; } return -1; }