/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef __DSP_DECIMATE_H__ #define __DSP_DECIMATE_H__ #include #include #include #include #include "utility.hpp" #include "dsp_types.hpp" namespace dsp { namespace decimate { class TranslateByFSOver4AndDecimateBy2CIC3 { public: buffer_c16_t execute( buffer_c8_t src, buffer_c16_t dst ); private: uint32_t _q1_i0 { 0 }; uint32_t _q0_i1 { 0 }; }; class DecimateBy2CIC3 { public: buffer_c16_t execute( buffer_c16_t src, buffer_c16_t dst ); private: uint32_t _iq0 { 0 }; uint32_t _iq1 { 0 }; }; class FIR64AndDecimateBy2Real { public: static constexpr size_t taps_count = 64; FIR64AndDecimateBy2Real( const std::array& taps ) : taps(taps) { } buffer_s16_t execute( buffer_s16_t src, buffer_s16_t dst ); private: std::array z; const std::array& taps; }; size_t fir_and_decimate_by_2_complex_fast( const complex16_t* const src_start, const size_t src_count, complex16_t* const dst_start, complex16_t* const z, const complex16_t* const taps, const size_t taps_count, const size_t decimation_factor ); class FIRAndDecimateBy2Complex { public: using sample_t = complex16_t; using tap_t = complex16_t; using taps_t = tap_t[]; /* NOTE! Current code makes an assumption that block of samples to be * processed will be a multiple of the taps_count. */ FIRAndDecimateBy2Complex( const size_t taps_count ) : samples_ { std::make_unique(taps_count) }, taps_reversed_ { std::make_unique(taps_count) }, taps_count_ { taps_count } { } template FIRAndDecimateBy2Complex( const T& taps ) : FIRAndDecimateBy2Complex(taps.size()) { std::reverse_copy(taps.cbegin(), taps.cend(), &taps_reversed_[0]); } buffer_c16_t execute( buffer_c16_t src, buffer_c16_t dst ) { const auto dst_count = fir_and_decimate_by_2_complex_fast(src.p, src.count, dst.p, &samples_[0], &taps_reversed_[0], taps_count_, decimation_factor); return { dst.p, dst_count, src.sampling_rate / decimation_factor }; } private: using samples_t = sample_t[]; const std::unique_ptr samples_; const std::unique_ptr taps_reversed_; const size_t taps_count_; const size_t decimation_factor { 2 }; }; class DecimateBy2CIC4Real { public: buffer_s16_t execute( buffer_s16_t src, buffer_s16_t dst ); private: int16_t z[5]; }; #if 0 class DecimateBy2HBF5Complex { public: buffer_c16_t execute( buffer_c16_t const src, buffer_c16_t const dst ); private: complex16_t z[11]; }; class DecimateBy2HBF7Complex { public: buffer_c16_t execute( buffer_c16_t const src, buffer_c16_t const dst ); private: complex16_t z[11]; }; #endif /* From http://www.dspguru.com/book/export/html/3 Here are several basic techniques to fake circular buffers: Split the calculation: You can split any FIR calculation into its "pre-wrap" and "post-wrap" parts. By splitting the calculation into these two parts, you essentially can do the circular logic only once, rather than once per tap. (See fir_double_z in FirAlgs.c above.) Duplicate the delay line: For a FIR with N taps, use a delay line of size 2N. Copy each sample to its proper location, as well as at location-plus-N. Therefore, the FIR calculation's MAC loop can be done on a flat buffer of N points, starting anywhere within the first set of N points. The second set of N delayed samples provides the "wrap around" comparable to a true circular buffer. (See fir_double_z in FirAlgs.c above.) Duplicate the coefficients: This is similar to the above, except that the duplication occurs in terms of the coefficients, not the delay line. Compared to the previous method, this has a calculation advantage of not having to store each incoming sample twice, and it also has a memory advantage when the same coefficient set will be used on multiple delay lines. (See fir_double_h in FirAlgs.c above.) Use block processing: In block processing, you use a delay line which is a multiple of the number of taps. You therefore only have to move the data once per block to implement the delay-line mechanism. When the block size becomes "large", the overhead of a moving the delay line once per block becomes negligible. */ #if 0 template class FIRAndDecimateBy2Complex { public: FIR64AndDecimateBy2Complex( const std::array& taps ) : taps { taps } { } buffer_c16_t execute( buffer_c16_t const src, buffer_c16_t const dst ) { /* int16_t input (sample count "n" must be multiple of 4) * -> int16_t output, decimated by 2. * taps are normalized to 1 << 16 == 1.0. */ return { dst.p, src.count / 2 }; } private: std::array z; const std::array& taps; complex process_one(const size_t start_offset) { const auto split = &z[start_offset]; const auto end = &z[z.size()]; auto tap = &taps[0]; complex t { 0, 0 }; auto p = split; while(p < end) { const auto t = *(tap++); const auto c = *(p++); t.real += c.real * t; t.imag += c.imag * t; } p = &z[0]; while(p < split) { const auto t = *(tap++); const auto c = *(p++); t.real += c.real * t; t.imag += c.imag * t; } return { t.real / 65536, t.imag / 65536 }; } }; #endif } /* namespace decimate */ } /* namespace dsp */ #endif/*__DSP_DECIMATE_H__*/