/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef __TOUCH_H__ #define __TOUCH_H__ #include <cstdint> #include <cstddef> #include <algorithm> #include <array> #include <functional> #include "debounce.hpp" #include "ui.hpp" namespace touch { using sample_t = uint16_t; constexpr sample_t sample_max = 1023; constexpr sample_t touch_threshold = sample_max / 5; struct Samples { sample_t xp; sample_t xn; sample_t yp; sample_t yn; constexpr Samples( ) : Samples { 0 } { } constexpr Samples( uint32_t v ) : xp { static_cast<sample_t>(v) }, xn { static_cast<sample_t>(v) }, yp { static_cast<sample_t>(v) }, yn { static_cast<sample_t>(v) } { } constexpr Samples( uint32_t xp, uint32_t xn, uint32_t yp, uint32_t yn ) : xp { static_cast<sample_t>(xp) }, xn { static_cast<sample_t>(xn) }, yp { static_cast<sample_t>(yp) }, yn { static_cast<sample_t>(yn) } { } Samples& operator +=(const Samples& r) { xp += r.xp; xn += r.xn; yp += r.yp; yn += r.yn; return *this; } Samples operator/(const unsigned int r) const { return { static_cast<sample_t>(xp / r), static_cast<sample_t>(xn / r), static_cast<sample_t>(yp / r), static_cast<sample_t>(yn / r) }; } Samples operator>>(const size_t n) const { return { static_cast<sample_t>(xp >> n), static_cast<sample_t>(xn >> n), static_cast<sample_t>(yp >> n), static_cast<sample_t>(yn >> n) }; } }; struct Frame { Samples pressure { }; Samples x { }; Samples y { }; bool touch { false }; }; struct Metrics { const float x; const float y; const float r; }; Metrics calculate_metrics(const Frame& frame); struct DigitizerPoint { int32_t x; int32_t y; }; struct Calibration { /* Touch screen calibration matrix, based on article by Carlos E. Vidales: * http://www.embedded.com/design/system-integration/4023968/How-To-Calibrate-Touch-Screens */ constexpr Calibration( const std::array<DigitizerPoint, 3>& s, const std::array<ui::Point, 3>& d ) : k { (s[0].x - s[2].x) * (s[1].y - s[2].y) - (s[1].x - s[2].x) * (s[0].y - s[2].y) }, a { (d[0].x() - d[2].x()) * (s[1].y - s[2].y) - (d[1].x() - d[2].x()) * (s[0].y - s[2].y) }, b { (s[0].x - s[2].x) * (d[1].x() - d[2].x()) - (d[0].x() - d[2].x()) * (s[1].x - s[2].x) }, c { s[0].y * (s[2].x * d[1].x() - s[1].x * d[2].x()) + s[1].y * (s[0].x * d[2].x() - s[2].x * d[0].x()) + s[2].y * (s[1].x * d[0].x() - s[0].x * d[1].x()) }, d { (d[0].y() - d[2].y()) * (s[1].y - s[2].y) - (d[1].y() - d[2].y()) * (s[0].y - s[2].y) }, e { (s[0].x - s[2].x) * (d[1].y() - d[2].y()) - (d[0].y() - d[2].y()) * (s[1].x - s[2].x) }, f { s[0].y * (s[2].x * d[1].y() - s[1].x * d[2].y()) + s[1].y * (s[0].x * d[2].y() - s[2].x * d[0].y()) + s[2].y * (s[1].x * d[0].y() - s[0].x * d[1].y()) } { } constexpr Calibration() : Calibration( /* Values derived from one PortaPack H1 unit. */ { { { 256, 731 }, { 880, 432 }, { 568, 146 } } }, { { { 32, 48 }, { 208, 168 }, { 120, 288 } } } ) { } ui::Point translate(const DigitizerPoint& p) const; private: int32_t k; int32_t a; int32_t b; int32_t c; int32_t d; int32_t e; int32_t f; }; template<size_t N> class Filter { public: constexpr Filter() = default; void reset() { history.fill(0); history_history = 0; accumulator = 0; n = 0; } void feed(const sample_t value) { accumulator = accumulator + value - history[n]; history[n] = value; n = (n + 1) % history.size(); history_history = (history_history << 1) | 1U; } int32_t value() const { return accumulator / N; } bool stable(const uint32_t bound) const { if( history_valid() ) { const auto minmax = std::minmax_element(history.cbegin(), history.cend()); const auto min = *minmax.first; const auto max = *minmax.second; const uint32_t delta = max - min; return (delta < bound); } else { return false; } } private: static constexpr uint32_t history_history_mask { (1U << N) - 1 }; std::array<sample_t, N> history { }; uint32_t history_history { 0 }; int32_t accumulator { 0 }; size_t n { 0 }; bool history_valid() const { return (history_history & history_history_mask) == history_history_mask; } }; class Manager { public: std::function<void(ui::TouchEvent)> on_event { }; void feed(const Frame& frame); private: enum State { NoTouch, TouchDetected, }; static constexpr float r_touch_threshold = 640; static constexpr size_t touch_count_threshold { 3 }; static constexpr uint32_t touch_stable_bound { 8 }; // Ensure filter length is equal or less than touch_count_threshold, // or coordinates from the last touch will be in the initial averages. Filter<touch_count_threshold> filter_x { }; Filter<touch_count_threshold> filter_y { }; //Debounce touch_debounce; State state { State::NoTouch }; bool point_stable() const { return filter_x.stable(touch_stable_bound) && filter_y.stable(touch_stable_bound); } ui::Point filtered_point() const; void touch_started() { fire_event(ui::TouchEvent::Type::Start); } void touch_moved() { fire_event(ui::TouchEvent::Type::Move); } void touch_ended() { fire_event(ui::TouchEvent::Type::End); } void fire_event(ui::TouchEvent::Type type) { if( on_event ) { on_event({ filtered_point(), type }); } } }; } /* namespace touch */ #endif/*__TOUCH_H__*/