/*
 * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
 * Copyright (C) 2016 Furrtek
 *
 * This file is part of PortaPack.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#include "ui_receiver.hpp"
#include "ui_freqman.hpp"

#include "portapack.hpp"
using namespace portapack;

#include "string_format.hpp"

#include "max283x.hpp"

namespace ui {

/* FrequencyField ********************************************************/

FrequencyField::FrequencyField(
    const Point parent_pos)
    : Widget{{parent_pos, {8 * 10, 16}}},
      length_{11},
      range(rf::tuning_range) {
    set_focusable(true);
}

rf::Frequency FrequencyField::value() const {
    return value_;
}

void FrequencyField::set_value(rf::Frequency new_value) {
    new_value = clamp_value(new_value);

    if (new_value != value_) {
        value_ = new_value;
        if (on_change) {
            on_change(value_);
        }
        set_dirty();
    }
}

void FrequencyField::set_step(rf::Frequency new_value) {
    step = new_value;
    // TODO: Quantize current frequency to a step of the new size?
}

void FrequencyField::paint(Painter& painter) {
    const std::string str_value = to_string_short_freq(value_);

    const auto paint_style = has_focus() ? style().invert() : style();

    painter.draw_string(
        screen_pos(),
        paint_style,
        str_value);
}

bool FrequencyField::on_key(const ui::KeyEvent event) {
    if (event == ui::KeyEvent::Select) {
        if (on_edit) {
            on_edit();
            return true;
        }
    }
    return false;
}

bool FrequencyField::on_encoder(const EncoderEvent delta) {
    if (step == 0) {  // 'Auto' mode.'
        auto ms = RTT2MS(halGetCounterValue());
        auto delta_ms = last_ms_ <= ms ? ms - last_ms_ : ms;
        last_ms_ = ms;

        // The goal is to map 'scale' to a range of about 10 to 10M.
        // The faster the encoder is rotated, the larger the step.
        // Linear doesn't feel right. Hyperbolic felt better.
        // To get these magic numbers, I graphed the function until the
        // curve shape seemed about right then tested on device.
        delta_ms = std::min(145ull, delta_ms) + 5;  // Prevent DIV/0
        int64_t scale = 200'000'000 / (0.001'55 * pow(delta_ms, 5.45)) + 8;
        set_value(value() + (delta * scale));
    } else {
        set_value(value() + (delta * step));
    }
    return true;
}

bool FrequencyField::on_touch(const TouchEvent event) {
    if (event.type == TouchEvent::Type::Start) {
        focus();
    }
    return true;
}

void FrequencyField::on_focus() {
    if (on_show_options) {
        on_show_options();
    }
}

rf::Frequency FrequencyField::clamp_value(rf::Frequency value) {
    return range.clip(value);
}

/* FrequencyKeypadView ***************************************************/

bool FrequencyKeypadView::on_encoder(const EncoderEvent delta) {
    focused_button += delta;
    if (focused_button < 0) {
        focused_button = buttons.size() - 1;
    } else if (focused_button >= (int16_t)buttons.size()) {
        focused_button = 0;
    }
    buttons[focused_button].focus();
    return true;
}

FrequencyKeypadView::FrequencyKeypadView(
    NavigationView& nav,
    const rf::Frequency value) {
    add_child(&text_value);

    const auto button_fn = [this](Button& button) {
        this->on_button(button);
    };

    const char* const key_caps = "123456789<0.";

    int n = 0;
    for (auto& button : buttons) {
        add_child(&button);
        const std::string label{
            key_caps[n]};
        button.id = n;
        button.on_highlight = [this](Button& button) {
            focused_button = button.id;
        };
        button.on_select = button_fn;
        button.set_parent_rect({(n % 3) * button_w,
                                (n / 3) * button_h + 24,
                                button_w, button_h});
        button.set_text(label);
        n++;
    }

    add_children({&button_save,
                  &button_load,
                  &button_close});

    button_save.on_select = [this, &nav](Button&) {
        nav.push<FrequencySaveView>(this->value());
    };
    button_load.on_select = [this, &nav](Button&) {
        auto load_view = nav.push<FrequencyLoadView>();
        load_view->on_frequency_loaded = [this](rf::Frequency value) {
            set_value(value);
        };
    };

    button_close.on_select = [this, &nav](Button&) {
        if (on_changed) {
            on_changed(this->value());
        }
        nav.pop();
    };

    set_value(value);
}

void FrequencyKeypadView::focus() {
    button_close.focus();
}

rf::Frequency FrequencyKeypadView::value() const {
    return mhz.as_int() * 1000000ULL + submhz.as_int() * submhz_base;
}

void FrequencyKeypadView::set_value(const rf::Frequency new_value) {
    mhz.set(new_value / 1000000);
    mhz.remove_leading_zeros();

    submhz.set((new_value % 1000000) / submhz_base);
    submhz.remove_trailing_zeros();

    update_text();
}

void FrequencyKeypadView::on_button(Button& button) {
    const auto s = button.text();
    if (s == ".") {
        field_toggle();
    } else if (s == "<") {
        digit_delete();
    } else {
        digit_add(s[0]);
    }
    update_text();
}

void FrequencyKeypadView::digit_add(const char c) {
    if (state == State::DigitMHz) {
        if (clear_field_if_digits_entered) {
            mhz.clear();
        }
        mhz.add_digit(c);
    } else {
        submhz.add_digit(c);
    }
    clear_field_if_digits_entered = false;
}

void FrequencyKeypadView::digit_delete() {
    if (state == State::DigitMHz) {
        mhz.delete_digit();
    } else {
        submhz.delete_digit();
    }
}

void FrequencyKeypadView::field_toggle() {
    if (state == State::DigitMHz) {
        state = State::DigitSubMHz;
        submhz.clear();
    } else {
        state = State::DigitMHz;
        clear_field_if_digits_entered = true;
    }
}

void FrequencyKeypadView::update_text() {
    const auto s = mhz.as_string() + "." + submhz.as_string();
    text_value.set(s);
}

/* FrequencyOptionsView **************************************************/

FrequencyOptionsView::FrequencyOptionsView(
    const Rect parent_rect,
    const Style* const style)
    : View{parent_rect} {
    set_style(style);

    field_step.on_change = [this](size_t n, OptionsField::value_t v) {
        (void)n;
        this->on_step_changed(v);
    };

    field_ppm.on_change = [this](int32_t v) {
        this->on_reference_ppm_correction_changed(v);
    };

    add_children({
        &text_step,
        &field_step,
    });

    if (portapack::clock_manager.get_reference().source == ClockManager::ReferenceSource::Xtal) {
        add_child(&field_ppm);
        add_child(&text_ppm);
    }
}

void FrequencyOptionsView::set_step(rf::Frequency f) {
    field_step.set_by_value(f);
}

void FrequencyOptionsView::set_reference_ppm_correction(int32_t v) {
    field_ppm.set_value(v);
}

void FrequencyOptionsView::on_step_changed(rf::Frequency v) {
    if (on_change_step) {
        on_change_step(v);
    }
}

void FrequencyOptionsView::on_reference_ppm_correction_changed(int32_t v) {
    if (on_change_reference_ppm_correction) {
        on_change_reference_ppm_correction(v);
    }
}

/* RFAmpField ************************************************************/

RFAmpField::RFAmpField(
    Point parent_pos)
    : NumberField{
          parent_pos,
          1,
          {0, 1},
          1,
          ' ',
      } {
    set_value(receiver_model.rf_amp());

    on_change = [](int32_t v) {
        receiver_model.set_rf_amp(v);
    };
}

/* RadioGainOptionsView **************************************************/

RadioGainOptionsView::RadioGainOptionsView(
    const Rect parent_rect,
    const Style* const style)
    : View{parent_rect} {
    set_style(style);

    add_children({
        &label_rf_amp,
        &field_rf_amp,
    });
}

/* LNAGainField **********************************************************/

LNAGainField::LNAGainField(
    Point parent_pos)
    : NumberField{
          parent_pos,
          2,
          {max283x::lna::gain_db_range.minimum, max283x::lna::gain_db_range.maximum},
          max283x::lna::gain_db_step,
          ' ',
      } {
    set_value(receiver_model.lna());

    on_change = [](int32_t v) {
        receiver_model.set_lna(v);
    };
}

void LNAGainField::on_focus() {
    if (on_show_options) {
        on_show_options();
    }
}

/* VGAGainField **********************************************************/

VGAGainField::VGAGainField(
    Point parent_pos)
    : NumberField{
          parent_pos,
          2,
          {max283x::vga::gain_db_range.minimum, max283x::vga::gain_db_range.maximum},
          max283x::vga::gain_db_step,
          ' ',
      } {
    set_value(receiver_model.vga());

    on_change = [](int32_t v) {
        receiver_model.set_vga(v);
    };
}

void VGAGainField::on_focus() {
    if (on_show_options) {
        on_show_options();
    }
}

/* AudioVolumeField *******************************************************/

AudioVolumeField::AudioVolumeField(
    Point parent_pos)
    : NumberField{
          parent_pos,
          /* length */ 2,
          /* range */ {0, 99},
          /* step */ 1,
          /* fill char */ ' '} {
    set_value(receiver_model.normalized_headphone_volume());

    on_change = [](int32_t v) {
        receiver_model.set_normalized_headphone_volume(v);
    };
}

} /* namespace ui */