/* * Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "proc_audiotx.hpp" #include "portapack_shared_memory.hpp" #include "sine_table_int8.hpp" #include "event_m4.hpp" #include void AudioTXProcessor::execute(const buffer_c8_t& buffer) { if (!configured) return; int32_t audio_sample_m; // Zero-order hold (poop) for (size_t i = 0; i < buffer.count; i++) { resample_acc += resample_inc; if (resample_acc >= 0x10000) { resample_acc -= 0x10000; if (stream) { audio_sample = 0; stream->read(&audio_sample, bytes_per_sample); // assumes little endian when reading 1 byte samples_read++; } } if (bytes_per_sample == 1) { sample = audio_sample - 0x80; audio_sample_m = sample * 256; } else { audio_sample_m = audio_sample; } // Output to speaker too if (!tone_key_enabled) { uint32_t imod32 = i & (AUDIO_OUTPUT_BUFFER_SIZE - 1); audio_data[imod32] = audio_sample_m; if (imod32 == (AUDIO_OUTPUT_BUFFER_SIZE - 1)) audio_output.write_unprocessed(audio_buffer); } sample = tone_gen.process(sample); // FM delta = sample * fm_delta; phase += delta; sphase = phase + (64 << 24); re = sine_table_i8[(sphase & 0xFF000000U) >> 24]; im = sine_table_i8[(phase & 0xFF000000U) >> 24]; buffer.p[i] = {(int8_t)re, (int8_t)im}; } progress_samples += buffer.count; if (progress_samples >= progress_interval_samples) { progress_samples -= progress_interval_samples; txprogress_message.progress = samples_read; // Inform UI about progress txprogress_message.done = false; shared_memory.application_queue.push(txprogress_message); } } void AudioTXProcessor::on_message(const Message* const message) { switch (message->id) { case Message::ID::AudioTXConfig: audio_config(*reinterpret_cast(message)); break; case Message::ID::ReplayConfig: configured = false; samples_read = 0; replay_config(*reinterpret_cast(message)); break; case Message::ID::SampleRateConfig: sample_rate_config(*reinterpret_cast(message)); break; case Message::ID::FIFOData: configured = true; break; default: break; } } void AudioTXProcessor::audio_config(const AudioTXConfigMessage& message) { fm_delta = message.deviation_hz * (0xFFFFFFULL / baseband_fs); tone_gen.configure(message.tone_key_delta, message.tone_key_mix_weight); progress_interval_samples = message.divider; resample_acc = 0; bytes_per_sample = message.bits_per_sample / 8; audio_output.configure(false); tone_key_enabled = (message.tone_key_delta != 0); audio::dma::shrink_tx_buffer(!tone_key_enabled); } void AudioTXProcessor::replay_config(const ReplayConfigMessage& message) { if (message.config) { stream = std::make_unique(message.config); // Tell application that the buffers and FIFO pointers are ready, prefill shared_memory.application_queue.push(sig_message); } else { stream.reset(); } } void AudioTXProcessor::sample_rate_config(const SampleRateConfigMessage& message) { resample_inc = (((uint64_t)message.sample_rate) << 16) / baseband_fs; // 16.16 fixed point message.sample_rate } int main() { EventDispatcher event_dispatcher{std::make_unique()}; event_dispatcher.run(); return 0; }