/*
 * Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
 * Copyright (C) 2016 Furrtek
 *
 * This file is part of PortaPack.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#include "pocsag.hpp"

#include "baseband_api.hpp"
#include "portapack.hpp"
using namespace portapack;

#include "string_format.hpp"
#include "utility.hpp"

namespace pocsag {

std::string bitrate_str(BitRate bitrate) {
	switch (bitrate) {
		case BitRate::FSK512:	return "512bps ";
		case BitRate::FSK1200:	return "1200bps";
		case BitRate::FSK2400:	return "2400bps";
		case BitRate::FSK3200:	return "3200bps";
		default:				return "????";
	}
}

std::string flag_str(PacketFlag packetflag) {
	switch (packetflag) {
		case PacketFlag::NORMAL:	return "OK";
		case PacketFlag::TIMED_OUT:	return "TIMED OUT";
		default:					return "";
	}
}

void insert_BCH(BCHCode& BCH_code, uint32_t * codeword) {
	uint32_t parity = 0;
	int data[21];
	int bit;
	int * bb;
	size_t c;
	
	for (c = 0; c < 21; c++) {
		bit = (((*codeword) << c) & 0x80000000U) ? 1 : 0;
		if (bit) parity++;
		data[c] = bit;
	}
	
	bb = BCH_code.encode(data);
	
	// Make sure ECC bits are cleared
	(*codeword) &= 0xFFFFF801;
	
	for (c = 0; c < 10; c++) {
		bit = bb[c];
		(*codeword) |= (bit << (10 - c));
		if (bit) parity++;
	}
	
	// Even parity
	(*codeword) |= (parity & 1);
}

uint32_t get_digit_code(char code) {
	if ((code >= '0') && (code <= '9')) {
		code -= '0';
	} else {
		if (code == 'S')
			code = 10;
		else if (code == 'U')
			code = 11;
		else if (code == ' ')
			code = 12;
		else if (code == '-')
			code = 13;
		else if (code == ']')
			code = 14;
		else if (code == '[')
			code = 15;
		else
			code = 12;
	}
	
	code = ((code & 0x0C) >> 2) | ((code & 0x03) << 2);		// ----3210 -> ----1032
	code = ((code & 0x0A) >> 1) | ((code & 0x05) << 1);		// ----1032 -> ----0123
	
	return code;
}
	
void pocsag_encode(const MessageType type, BCHCode& BCH_code, const uint32_t function, const std::string message, const uint32_t address,
	std::vector<uint32_t>& codewords) {
	
	size_t b, c, address_slot;
	size_t bit_idx, char_idx = 0;
	uint32_t codeword, digit_code;
	char ascii_char = 0;
	
	size_t message_size = message.size();
	
	// Preamble
	for (b = 0; b < (POCSAG_PREAMBLE_LENGTH / 32); b++) {
		codewords.push_back(0xAAAAAAAA);
	}
	
	// Address
	codeword = (address & 0x1FFFF8U) << 10;
	address_slot = (address & 7) * 2;
	// Function
	codeword |= (function << 11);
	
	insert_BCH(BCH_code, &codeword);
	
	// Address batch
	codewords.push_back(POCSAG_SYNCWORD);
	for (c = 0; c < 16; c++) {
		if (c == address_slot) {
			codewords.push_back(codeword);
			if (type != MessageType::ADDRESS_ONLY) break;
		} else
			codewords.push_back(POCSAG_IDLEWORD);
	}
	
	if (type == MessageType::ADDRESS_ONLY) return;	// Done.
	
	c++;
	codeword = 0;
	bit_idx = 20 + 11;
	
	// Messages batch(es)
	do {
		if (c == 0) codewords.push_back(POCSAG_SYNCWORD);
		
		for ( ; c < 16; c++) {
			
			// Fill up 20 bits
			if (type == MessageType::ALPHANUMERIC) {
				if ((char_idx < message_size) || (ascii_char)) {
					do {
						bit_idx -= 7;
						
						if (char_idx < message_size)
							ascii_char = message[char_idx] & 0x7F;
						else
							ascii_char = 0;		// Codeword padding
						
						// Bottom's up
						ascii_char = (ascii_char & 0xF0) >> 4 | (ascii_char & 0x0F) << 4;	// *6543210 -> 3210*654
						ascii_char = (ascii_char & 0xCC) >> 2 | (ascii_char & 0x33) << 2;	// 3210*654 -> 103254*6
						ascii_char = (ascii_char & 0xAA) >> 2 | (ascii_char & 0x55);		// 103254*6 -> *0123456
						
						codeword |= (ascii_char << bit_idx);
						
						char_idx++;
						
					} while (bit_idx > 11);
					
					codeword &= 0x7FFFF800;		// Trim data
					codeword |= 0x80000000;		// Message type
					insert_BCH(BCH_code, &codeword);
					
					codewords.push_back(codeword);
					
					if (bit_idx != 11) {
						bit_idx = 20 + bit_idx;
						codeword = ascii_char << bit_idx;
					} else {
						bit_idx = 20 + 11;
						codeword = 0;
					}
				} else {
					codewords.push_back(POCSAG_IDLEWORD);	// Batch padding
				}
			} else if (type == MessageType::NUMERIC_ONLY) {
				if (char_idx < message_size) {
					do {
						bit_idx -= 4;
						
						if (char_idx < message_size)
							digit_code = get_digit_code(message[char_idx]);
						else
							digit_code = 3;		// Space (codeword padding)
						
						codeword |= (digit_code << bit_idx);
						
						char_idx++;
						
					} while (bit_idx > 11);
					
					codeword |= 0x80000000;		// Message type
					insert_BCH(BCH_code, &codeword);
					
					codewords.push_back(codeword);
					
					bit_idx = 20 + 11;
					codeword = 0;
				} else {
					codewords.push_back(POCSAG_IDLEWORD);	// Batch padding
				}
			}
		}
		
		c = 0;
		
	} while (char_idx < message_size);
}


// -------------------------------------------------------------------------------
// -------------------------------------------------------------------------------
inline int bitsDiff(unsigned long left, unsigned long right)
{
	unsigned long xord = left ^ right;
	int count = 0;
	for (int i = 0; i<32; i++)
	{
		if ((xord & 0x01) != 0) ++count;
		xord = xord >> 1;
	}
	return(count);

}

// -------------------------------------------------------------------------------
// -------------------------------------------------------------------------------
static uint32_t ecs[32];        /* error correction sequence */
static uint32_t bch[1025];
static int eccSetup = 0;

// -------------------------------------------------------------------------------
// -------------------------------------------------------------------------------
void setupecc()
{
	unsigned int srr = 0x3b4;
	unsigned int i, n, j, k;

	/* calculate all information needed to implement error correction */
	// Note : this is only for 31,21 code used in pocsag & flex
	//        one should probably also make use of 32nd parity bit
	for (i = 0; i <= 20; i++)
	{
		ecs[i] = srr;
		if ((srr & 0x01) != 0) srr = (srr >> 1) ^ 0x3B4; else srr = srr >> 1;
	}

	/* bch holds a syndrome look-up table telling which bits to correct */
	// first 5 bits hold location of first error; next 5 bits hold location
	// of second error; bits 12 & 13 tell how many bits are bad
	for (i = 0; i<1024; i++) bch[i] = 0;

	/* two errors in data */
	for (n = 0; n <= 20; n++)
	{
		for (i = 0; i <= 20; i++)
		{
			j = (i << 5) + n;
			k = ecs[n] ^ ecs[i];
			bch[k] = j + 0x2000;
		}
	}

	/* one error in data */
	for (n = 0; n <= 20; n++)
	{
		k = ecs[n];
		j = n + (0x1f << 5);
		bch[k] = j + 0x1000;
	}

	/* one error in data and one error in ecc portion */
	for (n = 0; n <= 20; n++)
	{
		for (i = 0; i<10; i++)  /* ecc screwed up bit */
		{
			k = ecs[n] ^ (1 << i);
			j = n + (0x1f << 5);
			bch[k] = j + 0x2000;
		}
	}

	/* one error in ecc */
	for (n = 0; n<10; n++)
	{
		k = 1 << n;
		bch[k] = 0x3ff + 0x1000;
	}

	/* two errors in ecc */
	for (n = 0; n<10; n++)
	{
		for (i = 0; i<10; i++)
		{
			if (i != n)
			{
				k = (1 << n) ^ (1 << i);
				bch[k] = 0x3ff + 0x2000;
			}
		}
	}
}

// -------------------------------------------------------------------------------
// -------------------------------------------------------------------------------
inline int errorCorrection(uint32_t * val)
{
	// Set up the tables the first time
	if (eccSetup == 0)
	{
		setupecc();
		eccSetup = 1;
	}

	int i, synd, errl, acc, pari, ecc, b1, b2;

	errl = 0;
	pari = 0;

	/* run through error detection and correction routine */

	//  for (i=0; i<=20; i++)
	ecc = 0;
	for (i = 31; i >= 11; --i)
	{
		if ((*val&(1 << i))) { ecc = ecc ^ ecs[31 - i]; pari = pari ^ 0x01; }
	}

	//  for (i=21; i<=30; i++)
	acc = 0;
	for (i = 10; i >= 1; --i)
	{
		acc = acc << 1;
		if ((*val&(1 << i))) { acc = acc ^ 0x01; }
	}

	synd = ecc ^ acc;

	errl = 0;

	if (synd != 0)		/* if nonzero syndrome we have error */
	{

		if (bch[synd] != 0)		/* check for correctable error */
		{
			b1 = bch[synd] & 0x1f;
			b2 = bch[synd] >> 5;
			b2 = b2 & 0x1f;

			if (b2 != 0x1f)
			{
				*val ^= 0x01 << (31 - b2);
				ecc = ecc ^ ecs[b2];
			}

			if (b1 != 0x1f)
			{
				*val ^= 0x01 << (31 - b1);
				ecc = ecc ^ ecs[b1];
			}

			errl = bch[synd] >> 12;
		}
		else
		{
			errl = 3;
		}

		if (errl == 1) pari = pari ^ 0x01;
	}

	if (errl == 4) errl = 3;

	return errl;
}


void pocsag_decode_batch(const POCSAGPacket& batch, POCSAGState * const state) {
	int errors = 0;
	uint32_t codeword;
	char ascii_char;
	std::string output_text = "";
	
	state->out_type = EMPTY;
	
	// For each codeword...
	for (size_t i = 0; i < 16; i++) {
		codeword = batch[i];
		
		errorCorrection(&codeword);
		errors = errorCorrection(&codeword);

		if (!(codeword & 0x80000000U)) {
			// Address codeword
			if (state->mode == STATE_CLEAR) {
				//if (codeword != POCSAG_IDLEWORD) {
				if (! (bitsDiff(codeword, POCSAG_IDLEWORD) < 1)){

					state->function = (codeword >> 11) & 3;
					state->address = (codeword >> 10) & 0x1FFFF8U;	// 18 MSBs are transmitted
					state->mode = STATE_HAVE_ADDRESS;
					state->out_type = ADDRESS;
					state->errors = errors;

					state->ascii_idx = 0;
					state->ascii_data = 0;
				}
			} else {
				state->mode = STATE_CLEAR;				// New address = new message
			}
		} else {
			state->errors += errors;
			// Message codeword
			if (state->mode == STATE_HAVE_ADDRESS) {
				// First message codeword: complete address
				state->address |= (i >> 1);				// Add in the 3 LSBs (frame #)
				state->mode = STATE_GETTING_MSG;
			}
			
			state->out_type = MESSAGE;
			
			state->ascii_data |= ((codeword >> 11) & 0xFFFFF);	// Get 20 message bits
			state->ascii_idx += 20;
			
			// Raw 20 bits to 7 bit reversed ASCII
			while (state->ascii_idx >= 7) {
				state->ascii_idx -= 7;
				ascii_char = ((state->ascii_data) >> (state->ascii_idx)) & 0x7F;
				
				// Bottom's up
				ascii_char = (ascii_char & 0xF0) >> 4 | (ascii_char & 0x0F) << 4;	// 01234567 -> 45670123
				ascii_char = (ascii_char & 0xCC) >> 2 | (ascii_char & 0x33) << 2;	// 45670123 -> 67452301
				ascii_char = (ascii_char & 0xAA) >> 2 | (ascii_char & 0x55);		// 67452301 -> *7654321
   
				// Translate non-printable chars
				if ((ascii_char < 32) || (ascii_char > 126))
				{
					//output_text += "[" + to_string_dec_uint(ascii_char) + "]";
					output_text += ".";
				}
				else
					output_text += ascii_char;
			}
			
			state->ascii_data <<= 20;		// Remaining bits are for next time...
		}
	}
	
	state->output = output_text;
	
	if (state->mode == STATE_HAVE_ADDRESS)
		state->mode = STATE_CLEAR;
}

} /* namespace pocsag */