/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef __CRC_H__ #define __CRC_H__ #include <cstddef> #include <cstdint> #include <limits> #include <array> /* Inspired by * http://www.barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code * * ...then munged into a simplified implementation of boost::crc_basic and * boost::crc_optimal. * http://www.boost.org/doc/libs/release/libs/crc/ * * Copyright 2001, 2004 Daryle Walker. Use, modification, and distribution are * subject to the Boost Software License, Version 1.0. (See accompanying file * LICENSE_1_0.txt or a copy at <http://www.boost.org/LICENSE_1_0.txt>.) * */ template <size_t Width, bool RevIn = false, bool RevOut = false> class CRC { public: using value_type = uint32_t; constexpr CRC( const value_type truncated_polynomial, const value_type initial_remainder = 0, const value_type final_xor_value = 0) : truncated_polynomial{truncated_polynomial}, initial_remainder{initial_remainder}, final_xor_value{final_xor_value}, remainder{initial_remainder} { } value_type get_initial_remainder() const { return initial_remainder; } void reset(value_type new_initial_remainder) { remainder = new_initial_remainder; } void reset() { remainder = initial_remainder; } void process_bit(bool bit) { remainder ^= (bit ? top_bit() : 0U); const auto do_poly_div = static_cast<bool>(remainder & top_bit()); remainder <<= 1; if (do_poly_div) { remainder ^= truncated_polynomial; } } void process_bits(value_type bits, size_t bit_count) { if (RevIn) { process_bits_lsb_first(bits, bit_count); } else { process_bits_msb_first(bits, bit_count); } } void process_byte(const uint8_t byte) { process_bits(byte, 8); } void process_bytes(const void* const data, const size_t length) { const uint8_t* const p = reinterpret_cast<const uint8_t*>(data); for (size_t i = 0; i < length; i++) { process_byte(p[i]); } } template <size_t N> void process_bytes(const std::array<uint8_t, N>& data) { process_bytes(data.data(), data.size()); } value_type checksum() const { return ((RevOut ? reflect(remainder) : remainder) ^ final_xor_value) & mask(); } private: const value_type truncated_polynomial; const value_type initial_remainder; const value_type final_xor_value; value_type remainder; static constexpr size_t width() { return Width; } static constexpr value_type top_bit() { return 1U << (width() - 1); } static constexpr value_type mask() { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshift-count-overflow" return (~(~(0UL) << width())); #pragma GCC diagnostic pop } static value_type reflect(value_type x) { value_type reflection = 0; for (size_t i = 0; i < width(); ++i) { reflection <<= 1; reflection |= (x & 1); x >>= 1; } return reflection; } void process_bits_msb_first(value_type bits, size_t bit_count) { constexpr auto digits = std::numeric_limits<value_type>::digits; constexpr auto mask = static_cast<value_type>(1) << (digits - 1); bits <<= (std::numeric_limits<value_type>::digits - bit_count); for (size_t i = bit_count; i > 0; --i, bits <<= 1) { process_bit(static_cast<bool>(bits & mask)); } } void process_bits_lsb_first(value_type bits, size_t bit_count) { for (size_t i = bit_count; i > 0; --i, bits >>= 1) { process_bit(static_cast<bool>(bits & 0x01)); } } }; class Adler32 { public: void feed(const uint8_t v) { feed_one(v); } void feed(const void* const data, const size_t n) { const uint8_t* const p = reinterpret_cast<const uint8_t*>(data); for (size_t i = 0; i < n; i++) { feed_one(p[i]); } } template <typename T> void feed(const T& a) { feed(a.data(), sizeof(T)); } std::array<uint8_t, 4> bytes() const { return { static_cast<uint8_t>((b >> 8) & 0xff), static_cast<uint8_t>((b >> 0) & 0xff), static_cast<uint8_t>((a >> 8) & 0xff), static_cast<uint8_t>((a >> 0) & 0xff)}; } private: static constexpr uint32_t mod = 65521; uint32_t a{1}; uint32_t b{0}; void feed_one(const uint8_t c) { a = (a + c) % mod; b = (b + a) % mod; } }; #endif /*__CRC_H__*/