mayhem-firmware/firmware/baseband/proc_nfm_audio.cpp
Mark Thompson 0b2d5f75cc
Start audio DMA only in apps that use audio (#1982)
* Start audio DMA only in apps that use audio
* Rename main.cpp to main.cpp.unuse
* shrink_tx_buffer fix for transfers_per_buffer==1 scenario
2024-03-13 16:07:44 +01:00

185 lines
6.4 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_nfm_audio.hpp"
#include "sine_table_int8.hpp"
#include "portapack_shared_memory.hpp"
#include "audio_dma.hpp"
#include "event_m4.hpp"
#include <cstdint>
#include <cstddef>
void NarrowbandFMAudio::execute(const buffer_c8_t& buffer) {
// bool new_state;
if (!configured) {
return;
}
const auto decim_0_out = decim_0.execute(buffer, dst_buffer);
const auto decim_1_out = decim_1.execute(decim_0_out, dst_buffer);
channel_spectrum.feed(decim_1_out, channel_filter_low_f, channel_filter_high_f, channel_filter_transition);
const auto channel_out = channel_filter.execute(decim_1_out, dst_buffer);
feed_channel_stats(channel_out);
if (!pitch_rssi_enabled) {
// Normal mode, output demodulated audio
auto audio = demod.execute(channel_out, audio_buffer);
audio_output.write(audio);
if (ctcss_detect_enabled) {
/* 24kHz int16_t[16]
* -> FIR filter, <300Hz pass, >300Hz stop, gain of 1
* -> 12kHz int16_t[8]
*
* Note we're only processing a small section of the wave each time this fn is called */
auto audio_ctcss = ctcss_filter.execute(audio, work_audio_buffer);
// s16 to f32 for hpf
std::array<float, 8> audio_f;
for (size_t i = 0; i < audio_ctcss.count; i++) {
audio_f[i] = audio_ctcss.p[i] * ki;
}
hpf.execute_in_place(buffer_f32_t{
audio_f.data(),
audio_ctcss.count,
audio_ctcss.sampling_rate});
// Zero-crossing detection
for (size_t c = 0; c < audio_ctcss.count; c++) {
cur_sample = audio_f[c];
if (cur_sample * prev_sample < 0.0) {
z_acc += z_timer;
z_timer = 1;
z_count++;
} else
z_timer++;
prev_sample = cur_sample;
}
z_filter_count++;
if ((z_filter_count >= Z_MIN_FILTER_COUNT) && (z_count >= Z_MIN_ZERO_CROSSINGS)) {
ctcss_message.value = (100 * 12000 / 2 * z_count) / z_acc;
shared_memory.application_queue.push(ctcss_message);
z_filter_count = 0;
z_count = 0;
z_acc = 0;
}
}
} else {
// Direction-finding mode; output tone with pitch related to RSSI
for (size_t c = 0; c < 16; c++) {
tone_buffer.p[c] = (sine_table_i8[(tone_phase & 0xFF000000U) >> 24]) * 128;
tone_phase += tone_delta;
}
audio_output.write(tone_buffer);
/*new_state = audio_output.is_squelched();
if (new_state && !old_state)
shared_memory.application_queue.push(sig_message);
old_state = new_state;*/
}
}
void NarrowbandFMAudio::on_message(const Message* const message) {
switch (message->id) {
case Message::ID::UpdateSpectrum:
case Message::ID::SpectrumStreamingConfig:
channel_spectrum.on_message(message);
break;
case Message::ID::NBFMConfigure:
configure(*reinterpret_cast<const NBFMConfigureMessage*>(message));
break;
case Message::ID::CaptureConfig:
capture_config(*reinterpret_cast<const CaptureConfigMessage*>(message));
break;
case Message::ID::PitchRSSIConfigure:
pitch_rssi_config(*reinterpret_cast<const PitchRSSIConfigureMessage*>(message));
break;
default:
break;
}
}
void NarrowbandFMAudio::configure(const NBFMConfigureMessage& message) {
constexpr size_t decim_0_input_fs = baseband_fs;
constexpr size_t decim_0_output_fs = decim_0_input_fs / decim_0.decimation_factor;
constexpr size_t decim_1_input_fs = decim_0_output_fs;
constexpr size_t decim_1_output_fs = decim_1_input_fs / decim_1.decimation_factor;
constexpr size_t channel_filter_input_fs = decim_1_output_fs;
const size_t channel_filter_output_fs = channel_filter_input_fs / message.channel_decimation;
const size_t demod_input_fs = channel_filter_output_fs;
decim_0.configure(message.decim_0_filter.taps);
decim_1.configure(message.decim_1_filter.taps);
channel_filter.configure(message.channel_filter.taps, message.channel_decimation);
demod.configure(demod_input_fs, message.deviation);
channel_filter_low_f = message.channel_filter.low_frequency_normalized * channel_filter_input_fs;
channel_filter_high_f = message.channel_filter.high_frequency_normalized * channel_filter_input_fs;
channel_filter_transition = message.channel_filter.transition_normalized * channel_filter_input_fs;
channel_spectrum.set_decimation_factor(1.0f);
audio_output.configure(message.audio_hpf_config, message.audio_deemph_config, (float)message.squelch_level / 100.0);
hpf.configure(audio_24k_hpf_30hz_config);
ctcss_filter.configure(taps_64_lp_025_025.taps);
configured = true;
}
void NarrowbandFMAudio::pitch_rssi_config(const PitchRSSIConfigureMessage& message) {
pitch_rssi_enabled = message.enabled;
tone_delta = (message.rssi + 1000) * ((1ULL << 32) / 24000);
}
void NarrowbandFMAudio::capture_config(const CaptureConfigMessage& message) {
if (message.config) {
audio_output.set_stream(std::make_unique<StreamInput>(message.config));
} else {
audio_output.set_stream(nullptr);
}
}
int main() {
audio::dma::init_audio_out();
EventDispatcher event_dispatcher{std::make_unique<NarrowbandFMAudio>()};
event_dispatcher.run();
return 0;
}