251 lines
7.2 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_aprsrx.hpp"
#include "portapack_shared_memory.hpp"
#include "event_m4.hpp"
#include "stdio.h"
void APRSRxProcessor::execute(const buffer_c8_t& buffer) {
// This is called at 3072000 / 2048 = 1500Hz
if (!configured) return;
// FM demodulation
const auto decim_0_out = decim_0.execute(buffer, dst_buffer); // 2048 / 8 = 256 (512 I/Q samples)
const auto decim_1_out = decim_1.execute(decim_0_out, dst_buffer); // 256 / 8 = 32 (64 I/Q samples)
const auto channel_out = channel_filter.execute(decim_1_out, dst_buffer); // 32 / 2 = 16 (32 I/Q samples)
feed_channel_stats(channel_out);
auto audio = demod.execute(channel_out, audio_buffer);
audio_output.write(audio);
// Audio signal processing
for (size_t c = 0; c < audio.count; c++) {
const int32_t sample_int = audio.p[c] * 32768.0f;
int32_t current_sample = __SSAT(sample_int, 16);
current_sample /= 128;
// Delay line put
delay_line[delay_line_index & 0x3F] = current_sample;
// Delay line get, and LPF
sample_mixed = (delay_line[(delay_line_index - (samples_per_bit / 2)) & 0x3F] * current_sample) / 4;
sample_filtered = prev_mixed + sample_mixed + (prev_filtered / 2);
delay_line_index++;
prev_filtered = sample_filtered;
prev_mixed = sample_mixed;
// Slice
sample_bits <<= 1;
uint8_t bit = (sample_filtered < -20) ? 1 : 0;
sample_bits |= bit;
/*
int16_t scaled = bit == 1 ? 32767 : -32767;
if( stream ) {
const size_t bytes_to_write = sizeof(scaled) * 1;
const auto result = stream->write(&scaled, bytes_to_write);
}
*/
// Check for "clean" transition: either 0011 or 1100
if ((((sample_bits >> 2) ^ sample_bits) & 3) == 3) {
// Adjust phase
if (phase < 0x8000)
phase += 0x800; // Is this a proper value ?
else
phase -= 0x800;
}
phase += phase_inc;
if (phase >= 0x10000) {
phase &= 0xFFFF;
if (true) {
uint8_t bit;
if (__builtin_popcount(sample_bits & 0xFF) >= 0x05) {
bit = 0x1;
} else {
bit = 0x0;
}
if (parse_bit(bit)) {
parse_packet();
}
}
}
}
}
void APRSRxProcessor::parse_packet() {
// validate crc
if (packet_buffer_size >= aprs::APRS_MIN_LENGTH) {
uint16_t crc = 0xFFFF;
for (size_t i = 0; i < packet_buffer_size; i++) {
uint8_t byte = packet_buffer[i];
crc = ((crc >> 8) ^ crc_ccitt_tab[(crc ^ byte) & 0xFF]) & 0xFFFF;
}
if (crc == 0xF0B8) {
parse_ax25();
}
}
}
void APRSRxProcessor::parse_ax25() {
aprs_packet.clear();
aprs_packet.set_valid_checksum(true);
for (size_t i = 0; i < packet_buffer_size; i++) {
aprs_packet.set(i, packet_buffer[i]);
}
APRSPacketMessage packet_message{aprs_packet};
shared_memory.application_queue.push(packet_message);
}
bool APRSRxProcessor::parse_bit(const uint8_t current_bit) {
uint8_t decoded_bit = ~(current_bit ^ last_bit) & 0x1;
last_bit = current_bit;
// int16_t log = decoded_bit == 0 ? -32768 : 32767;
// if(stream){
// const size_t bytes_to_write = sizeof(log) * 1;
// const auto result = stream->write(&log, bytes_to_write);
// }
if (decoded_bit & 0x1) {
if (ones_count < 8) {
ones_count++;
}
} else {
if (ones_count > 6) { // not valid
state = WAIT_FLAG;
current_byte = 0;
ones_count = 0;
byte_index = 0;
packet_buffer_size = 0;
return false;
} else if (ones_count == 6) { // flag
bool done = false;
if (state == IN_FRAME) {
done = true;
} else {
packet_buffer_size = 0;
}
state = WAIT_FRAME;
current_byte = 0;
ones_count = 0;
byte_index = 0;
return done;
} else if (ones_count == 5) { // bit stuff
ones_count = 0;
return false;
} else {
ones_count = 0;
}
}
// store
current_byte = current_byte >> 1;
current_byte |= (decoded_bit == 0x1 ? 0x80 : 0x0);
byte_index++;
if (byte_index >= 8) {
byte_index = 0;
if (state == WAIT_FRAME) {
state = IN_FRAME;
}
if (state == IN_FRAME) {
if (packet_buffer_size + 1 >= 256) {
state = WAIT_FLAG;
current_byte = 0;
ones_count = 0;
byte_index = 0;
packet_buffer_size = 0;
return false;
}
packet_buffer[packet_buffer_size++] = current_byte;
}
}
return false;
}
void APRSRxProcessor::on_message(const Message* const message) {
if (message->id == Message::ID::APRSRxConfigure)
configure(*reinterpret_cast<const APRSRxConfigureMessage*>(message));
if (message->id == Message::ID::CaptureConfig)
capture_config(*reinterpret_cast<const CaptureConfigMessage*>(message));
}
void APRSRxProcessor::capture_config(const CaptureConfigMessage& message) {
if (message.config) {
// stream = std::make_unique<StreamInput>(message.config);
audio_output.set_stream(std::make_unique<StreamInput>(message.config));
} else {
// stream.reset();
audio_output.set_stream(nullptr);
}
}
void APRSRxProcessor::configure(const APRSRxConfigureMessage& message) {
decim_0.configure(taps_11k0_decim_0.taps);
decim_1.configure(taps_11k0_decim_1.taps);
channel_filter.configure(taps_11k0_channel.taps, 2);
demod.configure(audio_fs, 5000);
audio_output.configure(audio_24k_hpf_300hz_config, audio_24k_deemph_300_6_config, 0);
samples_per_bit = audio_fs / message.baudrate;
phase_inc = (0x10000 * message.baudrate) / audio_fs;
phase = 0;
// Delay line
delay_line_index = 0;
state = WAIT_FLAG;
configured = true;
}
int main() {
EventDispatcher event_dispatcher{std::make_unique<APRSRxProcessor>()};
event_dispatcher.run();
return 0;
}