mirror of
https://github.com/portapack-mayhem/mayhem-firmware.git
synced 2025-01-10 21:13:38 +00:00
3998dc124a
* added cpld info shell commands * fixed reset
337 lines
9.3 KiB
C++
337 lines
9.3 KiB
C++
/*
|
|
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
|
|
*
|
|
* This file is part of PortaPack.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "cpld_max5.hpp"
|
|
|
|
#include "jtag.hpp"
|
|
|
|
#include <cstdint>
|
|
#include <array>
|
|
|
|
namespace cpld {
|
|
namespace max5 {
|
|
|
|
void CPLD::bypass() {
|
|
shift_ir(instruction_t::BYPASS);
|
|
jtag.runtest_tck(18003);
|
|
}
|
|
|
|
void CPLD::sample() {
|
|
shift_ir(instruction_t::SAMPLE);
|
|
jtag.runtest_tck(93);
|
|
for (size_t i = 0; i < 80; i++) {
|
|
jtag.shift_dr(3, 0b111);
|
|
}
|
|
}
|
|
|
|
void CPLD::sample(std::bitset<240>& value) {
|
|
shift_ir(instruction_t::SAMPLE);
|
|
jtag.runtest_tck(93);
|
|
shift_dr(value);
|
|
}
|
|
|
|
void CPLD::extest(std::bitset<240>& value) {
|
|
shift_ir(instruction_t::EXTEST);
|
|
shift_dr(value);
|
|
}
|
|
|
|
void CPLD::clamp() {
|
|
shift_ir(instruction_t::CLAMP);
|
|
jtag.runtest_tck(93);
|
|
}
|
|
|
|
void CPLD::enable() {
|
|
shift_ir(instruction_t::ISC_ENABLE);
|
|
jtag.runtest_tck(18003); // 1ms
|
|
}
|
|
|
|
void CPLD::disable() {
|
|
shift_ir(instruction_t::ISC_DISABLE);
|
|
jtag.runtest_tck(18003); // 1ms
|
|
}
|
|
|
|
/* Sector erase:
|
|
* Involves shifting in the instruction to erase the device and applying
|
|
* an erase pulse or pulses. The erase pulse is automatically generated
|
|
* internally by waiting in the run, test, or idle state for the
|
|
* specified erase pulse time of 500 ms for the CFM block and 500 ms for
|
|
* each sector of the user flash memory (UFM) block.
|
|
*/
|
|
void CPLD::bulk_erase() {
|
|
erase_sector(0x0011);
|
|
erase_sector(0x0001);
|
|
erase_sector(0x0000);
|
|
}
|
|
|
|
bool CPLD::program(
|
|
const std::array<uint16_t, 3328>& block_0,
|
|
const std::array<uint16_t, 512>& block_1) {
|
|
bulk_erase();
|
|
|
|
/* Program:
|
|
* involves shifting in the address, data, and program instruction and
|
|
* generating the program pulse to program the flash cells. The program
|
|
* pulse is automatically generated internally by waiting in the run/test/
|
|
* idle state for the specified program pulse time of 75 μs. This process
|
|
* is repeated for each address in the CFM and UFM blocks.
|
|
*/
|
|
program_block(0x0000, block_0);
|
|
program_block(0x0001, block_1);
|
|
|
|
const auto verify_ok = verify(block_0, block_1);
|
|
|
|
if (verify_ok) {
|
|
/* Do "something". Not sure what, but it happens after verify. */
|
|
/* Starts with a sequence the same as Program: Block 0. */
|
|
/* Perhaps it is a write to tell the CPLD that the bitstream
|
|
* verified OK, and it's OK to load and execute? And despite only
|
|
* one bit changing, a write must be a multiple of a particular
|
|
* length (64 bits)? */
|
|
sector_select(0x0000);
|
|
shift_ir(instruction_t::ISC_PROGRAM);
|
|
jtag.runtest_tck(93); // 5 us
|
|
|
|
/* TODO: Use data from cpld_block_0, with appropriate bit(s) changed */
|
|
/* Perhaps this is the "ISP_DONE" bit? */
|
|
jtag.shift_dr(16, block_0[0] & 0xfbff);
|
|
jtag.runtest_tck(1800); // 100us
|
|
jtag.shift_dr(16, block_0[1]);
|
|
jtag.runtest_tck(1800); // 100us
|
|
jtag.shift_dr(16, block_0[2]);
|
|
jtag.runtest_tck(1800); // 100us
|
|
jtag.shift_dr(16, block_0[3]);
|
|
jtag.runtest_tck(1800); // 100us
|
|
}
|
|
|
|
return verify_ok;
|
|
}
|
|
|
|
bool CPLD::verify(
|
|
const std::array<uint16_t, 3328>& block_0,
|
|
const std::array<uint16_t, 512>& block_1) {
|
|
/* Verify */
|
|
const auto block_0_success = verify_block(0x0000, block_0);
|
|
const auto block_1_success = verify_block(0x0001, block_1);
|
|
return block_0_success && block_1_success;
|
|
}
|
|
|
|
uint32_t CPLD::crc() {
|
|
crc_t crc{0x04c11db7, 0xffffffff, 0xffffffff};
|
|
block_crc(0, 3328, crc);
|
|
block_crc(1, 512, crc);
|
|
return crc.checksum();
|
|
}
|
|
|
|
void CPLD::sector_select(const uint16_t id) {
|
|
shift_ir(instruction_t::ISC_ADDRESS_SHIFT);
|
|
jtag.runtest_tck(93); // 5us
|
|
jtag.shift_dr(13, id); // Sector ID
|
|
}
|
|
|
|
bool CPLD::idcode_ok() {
|
|
return (get_idcode() == idcode);
|
|
}
|
|
|
|
uint32_t CPLD::get_idcode() {
|
|
shift_ir(instruction_t::IDCODE);
|
|
return jtag.shift_dr(idcode_length, 0);
|
|
}
|
|
|
|
std::array<uint16_t, 5> CPLD::read_silicon_id() {
|
|
sector_select(0x0089);
|
|
shift_ir(instruction_t::ISC_READ);
|
|
jtag.runtest_tck(93); // 5us
|
|
|
|
std::array<uint16_t, 5> silicon_id;
|
|
silicon_id[0] = jtag.shift_dr(16, 0xffff);
|
|
silicon_id[1] = jtag.shift_dr(16, 0xffff);
|
|
silicon_id[2] = jtag.shift_dr(16, 0xffff);
|
|
silicon_id[3] = jtag.shift_dr(16, 0xffff);
|
|
silicon_id[4] = jtag.shift_dr(16, 0xffff);
|
|
return silicon_id;
|
|
}
|
|
|
|
/* Check ID:
|
|
* The silicon ID is checked before any Program or Verify process. The
|
|
* time required to read this silicon ID is relatively small compared to
|
|
* the overall programming time.
|
|
*/
|
|
bool CPLD::silicon_id_ok() {
|
|
const auto silicon_id = read_silicon_id();
|
|
|
|
return (
|
|
(silicon_id[0] == 0x8232) &&
|
|
(silicon_id[1] == 0x2aa2) &&
|
|
(silicon_id[2] == 0x4a82) &&
|
|
(silicon_id[3] == 0x8c0c) &&
|
|
(silicon_id[4] == 0x0000));
|
|
}
|
|
|
|
uint32_t CPLD::usercode() {
|
|
shift_ir(instruction_t::USERCODE);
|
|
jtag.runtest_tck(93); // 5us
|
|
return jtag.shift_dr(32, 0xffffffff);
|
|
}
|
|
|
|
void CPLD::erase_sector(const uint16_t id) {
|
|
sector_select(id);
|
|
shift_ir(instruction_t::ISC_ERASE);
|
|
jtag.runtest_tck(9000003); // 500ms
|
|
}
|
|
|
|
void CPLD::program_block(
|
|
const uint16_t id,
|
|
const uint16_t* const data,
|
|
const size_t count) {
|
|
sector_select(id);
|
|
shift_ir(instruction_t::ISC_PROGRAM);
|
|
jtag.runtest_tck(93); // 5us
|
|
|
|
for (size_t i = 0; i < count; i++) {
|
|
jtag.shift_dr(16, data[i]);
|
|
jtag.runtest_tck(1800);
|
|
}
|
|
}
|
|
|
|
void CPLD::prepare_read(uint16_t block) {
|
|
sector_select(block);
|
|
shift_ir(instruction_t::ISC_READ);
|
|
jtag.runtest_tck(93); // 5us
|
|
}
|
|
|
|
uint32_t CPLD::read() {
|
|
return jtag.shift_dr(16, 0xffff) & 0xfbff;
|
|
}
|
|
|
|
bool CPLD::verify_block(
|
|
const uint16_t id,
|
|
const uint16_t* const data,
|
|
const size_t count) {
|
|
sector_select(id);
|
|
shift_ir(instruction_t::ISC_READ);
|
|
jtag.runtest_tck(93); // 5us
|
|
|
|
bool success = true;
|
|
for (size_t i = 0; i < count; i++) {
|
|
const auto from_device = jtag.shift_dr(16, 0xffff);
|
|
if (from_device != data[i]) {
|
|
if ((id == 0) && (i == 0)) {
|
|
// Account for bit that indicates bitstream is valid.
|
|
if ((from_device & 0xfbff) != (data[i] & 0xfbff)) {
|
|
success = false;
|
|
}
|
|
} else {
|
|
success = false;
|
|
}
|
|
}
|
|
}
|
|
return success;
|
|
}
|
|
|
|
bool CPLD::is_blank_block(const uint16_t id, const size_t count) {
|
|
sector_select(id);
|
|
shift_ir(instruction_t::ISC_READ);
|
|
jtag.runtest_tck(93); // 5us
|
|
|
|
bool success = true;
|
|
for (size_t i = 0; i < count; i++) {
|
|
const auto from_device = jtag.shift_dr(16, 0xffff);
|
|
if (from_device != 0xffff) {
|
|
success = false;
|
|
}
|
|
}
|
|
return success;
|
|
}
|
|
|
|
void CPLD::block_crc(const uint16_t id, const size_t count, crc_t& crc) {
|
|
sector_select(id);
|
|
shift_ir(instruction_t::ISC_READ);
|
|
jtag.runtest_tck(93); // 5us
|
|
|
|
for (size_t i = 0; i < count; i++) {
|
|
const uint16_t from_device = jtag.shift_dr(16, 0xffff);
|
|
crc.process_bytes(&from_device, sizeof(from_device));
|
|
}
|
|
}
|
|
|
|
bool CPLD::is_blank() {
|
|
const auto block_0_blank = is_blank_block(0x0000, 3328);
|
|
const auto block_1_blank = is_blank_block(0x0001, 512);
|
|
return block_0_blank && block_1_blank;
|
|
}
|
|
|
|
bool CPLD::AGM_enter_maintenance_mode() {
|
|
shift_ir(instruction_t::AGM_STAGE_1);
|
|
jtag.runtest_tck(100);
|
|
shift_ir(instruction_t::AGM_STAGE_2);
|
|
jtag.runtest_tck(100);
|
|
shift_ir(instruction_t::AGM_STAGE_1);
|
|
jtag.runtest_tck(100);
|
|
|
|
shift_ir(instruction_t::AGM_SET_REGISTER);
|
|
jtag.runtest_tck(100);
|
|
jtag.shift_dr(8, 0x0);
|
|
jtag.runtest_tck(100);
|
|
|
|
shift_ir(instruction_t::AGM_PROGRAM);
|
|
jtag.runtest_tck(100);
|
|
jtag.shift_dr(32, 0x203f0044uL, 0x80000000);
|
|
|
|
shift_ir(instruction_t::IDCODE);
|
|
jtag.runtest_tck(100);
|
|
auto idcode = jtag.shift_dr(idcode_length, 0);
|
|
|
|
return idcode == 0x00025610;
|
|
}
|
|
|
|
void CPLD::AGM_exit_maintenance_mode() {
|
|
shift_ir(instruction_t::AGM_RESET);
|
|
jtag.runtest_tck(100);
|
|
}
|
|
|
|
void CPLD::AGM_enter_read_mode() {
|
|
shift_ir(instruction_t::AGM_SET_REGISTER);
|
|
jtag.runtest_tck(100);
|
|
jtag.shift_dr(8, 0xf0);
|
|
jtag.runtest_tck(100);
|
|
|
|
shift_ir(instruction_t::AGM_READ);
|
|
jtag.runtest_tck(100);
|
|
}
|
|
|
|
uint32_t CPLD::AGM_encode_address(uint32_t address, uint32_t trailer) {
|
|
uint32_t p = trailer;
|
|
for (size_t i = 0; i < 18; i++) {
|
|
auto address_bit = (address >> i) & 0x01;
|
|
p |= address_bit << (31 - i);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
uint32_t CPLD::AGM_read(uint32_t address) {
|
|
auto encoded_address = AGM_encode_address(address * 4, 0xC0);
|
|
return jtag.shift_dr(32, encoded_address, 0x0);
|
|
}
|
|
|
|
} /* namespace max5 */
|
|
} /* namespace cpld */
|