mayhem-firmware/firmware/application/clock_manager.cpp
Maescool 920b98f7c9 Upstream merge to make new revision of PortaPack work (#206)
* Power: Turn off additional peripheral clock branches.

* Update schematic with new symbol table and KiCad standard symbols.
Fix up wires.

* Schematic: Update power net labels.

* Schematic: Update footprint names to match library changes.

* Schematic: Update header vendor and part numbers.

* Schematic: Specify (arbitrary) value for PDN# net.

* Schematic: Remove fourth fiducial. Not standard practice, and was taking up valuable board space.

* Schematic: Add reference oscillator -- options for clipped sine or HCMOS output.

* Schematic: Update copyright year.

* Schematic: Remove CLKOUT to CPLD. It was a half-baked idea.

* Schematic: Add (experimental) GPS circuit.
Add note about charging circuit.
Update date and revision to match PCB.

* PCB: Update from schematic change: now revision 20180819.
Diff was extensive due to net renumbering...

* PCB: Fix GPS courtyard to accommodate crazy solder paste recommendation in integration manual.
PCB: Address DRC clearance violation between via and oscillator pad.

* PCB: Update copyright on drawing.

* Update schematic and PCB date and revision.

* gitignore: Sublime Text editor project/workspace files

* Power: Power up or power down peripheral clock at appropriate times, so firmware doesn't freeze...

* Clocking: Fix incorrect shift for CGU IDIVx_CTRL.PD field.

* LPC43xx: Add CGU IDIVx struct/union type.

* Power: Switch off unused IDIV dividers. Make note of active IDIVs and their use.

* HackRF Mode: Upgrade firmware to 2018.01.1 (API 1.02)

* MAX V CPLD: Refactor class to look more like Xilinx CoolRunner II CPLD class.

* MAX V CPLD: Add BYPASS, SAMPLE support.
Rename enter_isp -> enable, exit_isp -> disable.
Use SAMPLE at start of flash process, which somehow addresses the problem where CFM wouldn't load into SRAM (and become the active bitstream) after flashing.

* MAX V CPLD: Reverse verify data checking logic to make it a little faster.

* CPLD: After reprogramming flash, immediately clamp I/O signals, load to SRAM, and "execute" the new bitstream.

* Si5351: Refactor code, make one of the registers more type-safe.
Clock Manager: Track selected reference clock source for later use in user interface.

* Clock Manager: Add note about PPM only affecting Si5351C PLLA, which always runs from the HackRF 25MHz crystal.
It is assumed an external clock does not need adjustment, though I am open to being convinced otherwise...

* PPM UI: Show "EXT" when showing PPM adjustment and reference clock is external.

* CPLD: Add pins and logic for new PortaPack hardware feature(s).

* CPLD: Bitstream to support new hardware features.

* Clock Generator: Add a couple more setter methods for ClockControl registers.

* Clock Manager: Use shared MCU CLKIN clock control configuration constant.

* Clock Manager: Reduce MCU CLKIN driver current. 2mA should be plenty.

* Clock Manager: Remove redundant clock generator output enable.

* Bootstrap: Remove unnecessary ldscript hack to locate SPIFI mode change code in RAM.

* Bootstrap: Get CPU operating at max frequency as soon as possible.
Update SPIFI speed comment.
Make some more LPC43xx types into unions with uint32_t.

* Bootstrap: Explicitly configure IDIVB for SPIFI, despite LPC43xx bootloader setting it.

* Clock Manager: Init peripherals before CPLD reconfig. Do the clock generator setup after, so we can check presence of PortaPack reference clock with the help of the latest CPLD bitstream.

* Clock Manager: Reverse sense of conditional that determines crystal or non-crystal reference source. This is for an expected upcoming change where multiple external options can be differentiated.

* Bootstrap: Consolidate clock configuration, update SPIFI rate comment.

* Clock Manager: Use IDIVA for clock source for all peripherals, instead of PLL1. Should make switching easier going forward.
Don't use IRC as clock during initial clock manager configuration. Until we switch to GP_CLKIN, we should go flat out...

* ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution.

* PortaPack IO: Expose method to set reference oscillator enable pin.

* Pin configuration: Do SPIFI pin config with other pins, in preparation for eliminating separate bootloader.

* Pin configuration: Disable input buffers on pins that are never read.

* Revert "ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution."

This reverts commit c0e2bb6cc4cc656769323bdbb8ee5a16d2d5bb03.

* Remove unused board files.

* Add LPC43xx functions.

* chibios: Replace code with per-peripheral structs defining clocks, interrupts, and reset bits.

* LPC43xx: Add MCPWM peripheral struct.

* clock generator: Use recommended PLL reset register value.

Datasheet recommends a value. AN619 is quiet on the topic, claims the low nibble is default 0b0000.

* GPIO: Tweak masking of SCU function.

I don't remember why I thought this was necessary...

* HAL: Explicitly turn on timer peripheral clocks used as systicks, during init.

* SCU: Add struct to hold pin configuration.

* PAL: Add functions to address The Glitch.

https://greatscottgadgets.com/2018/02-28-we-fixed-the-glitch/

* PAL/board: New IO initialization code

Declare initial state for SCU pin config, GPIOs. Apply initial state during PAL init. Perform VAA slow turn-on to address The Glitch.

* Merge M0 and M4 to eliminate need for bootstrap firmware

During _early_init, detect if we're running on the M4 or M0.
If M4: do M4-specific core initialization, reset peripherals, speed up SPIFI clock, start M0, go to sleep.
If M0: do all the other things.

* Pins: Miscellaneous SCU configuration tweaks.

* Little code clarity improvement.

* bootstrap: Remove, not necessary.

* Clock Manager: Large re-working to support external references.

* Fix merge conflicts
2019-01-11 06:56:21 +00:00

653 lines
22 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "clock_manager.hpp"
#include "portapack_io.hpp"
#include "hackrf_hal.hpp"
using namespace hackrf::one;
#include "lpc43xx_cpp.hpp"
using namespace lpc43xx;
static void set_clock(LPC_CGU_BASE_CLK_Type& clk, const cgu::CLK_SEL clock_source) {
clk.AUTOBLOCK = 1;
clk.CLK_SEL = toUType(clock_source);
}
static constexpr uint32_t systick_count(const uint32_t clock_source_f) {
return clock_source_f / CH_FREQUENCY;
}
static constexpr uint32_t systick_load(const uint32_t clock_source_f) {
return systick_count(clock_source_f) - 1;
}
constexpr uint32_t clock_source_irc_f = 12000000;
constexpr uint32_t clock_source_pll1_boot_f = 96000000;
//constexpr uint32_t clock_source_gp_clkin = 20000000;
constexpr uint32_t clock_source_pll1_step_f = 100000000;
constexpr uint32_t clock_source_pll1_f = 200000000;
constexpr auto systick_count_irc = systick_load(clock_source_irc_f);
constexpr auto systick_count_pll1 = systick_load(clock_source_pll1_f);
constexpr auto systick_count_pll1_step = systick_load(clock_source_pll1_step_f);
constexpr uint32_t si5351_vco_f = 800000000;
constexpr uint32_t i2c0_bus_f = 400000;
constexpr uint32_t i2c0_high_period_ns = 900;
constexpr I2CClockConfig i2c_clock_config_400k_boot_clock {
.clock_source_f = clock_source_pll1_boot_f,
.bus_f = i2c0_bus_f,
.high_period_ns = i2c0_high_period_ns,
};
constexpr I2CClockConfig i2c_clock_config_400k_fast_clock {
.clock_source_f = clock_source_pll1_f,
.bus_f = i2c0_bus_f,
.high_period_ns = i2c0_high_period_ns,
};
constexpr I2CConfig i2c_config_boot_clock {
.high_count = i2c_clock_config_400k_boot_clock.i2c_high_count(),
.low_count = i2c_clock_config_400k_boot_clock.i2c_low_count(),
};
constexpr I2CConfig i2c_config_fast_clock {
.high_count = i2c_clock_config_400k_fast_clock.i2c_high_count(),
.low_count = i2c_clock_config_400k_fast_clock.i2c_low_count(),
};
constexpr si5351::Inputs si5351_inputs {
.f_xtal = si5351_xtal_f,
.f_clkin = si5351_clkin_f,
.clkin_div = 1,
};
static_assert(si5351_inputs.f_xtal == si5351_xtal_f, "XTAL output frequency wrong");
static_assert(si5351_inputs.f_clkin_out() == si5351_clkin_f, "CLKIN output frequency wrong");
constexpr si5351::PLLInputSource::Type si5351_pll_input_sources {
si5351::PLLInputSource::PLLA_Source_XTAL
| si5351::PLLInputSource::PLLB_Source_CLKIN
| si5351::PLLInputSource::CLKIN_Div1
};
constexpr si5351::PLL si5351_pll_xtal_25m {
.f_in = si5351_inputs.f_xtal,
.a = 32,
.b = 0,
.c = 1,
};
constexpr auto si5351_pll_a_xtal_reg = si5351_pll_xtal_25m.reg(0);
constexpr si5351::PLL si5351_pll_clkin_10m {
.f_in = si5351_inputs.f_clkin_out(),
.a = 80,
.b = 0,
.c = 1,
};
constexpr auto si5351_pll_b_clkin_reg = si5351_pll_clkin_10m.reg(1);
static_assert(si5351_pll_xtal_25m.f_vco() == si5351_vco_f, "PLL XTAL frequency wrong");
static_assert(si5351_pll_xtal_25m.p1() == 3584, "PLL XTAL P1 wrong");
static_assert(si5351_pll_xtal_25m.p2() == 0, "PLL XTAL P2 wrong");
static_assert(si5351_pll_xtal_25m.p3() == 1, "PLL XTAL P3 wrong");
static_assert(si5351_pll_clkin_10m.f_vco() == si5351_vco_f, "PLL CLKIN frequency wrong");
static_assert(si5351_pll_clkin_10m.p1() == 9728, "PLL CLKIN P1 wrong");
static_assert(si5351_pll_clkin_10m.p2() == 0, "PLL CLKIN P2 wrong");
static_assert(si5351_pll_clkin_10m.p3() == 1, "PLL CLKIN P3 wrong");
/*
constexpr si5351::MultisynthFractional si5351_ms_18m432 {
.f_src = si5351_vco_f,
.a = 43,
.b = 29,
.c = 72,
.r_div = 1,
};
*/
/*
constexpr si5351::MultisynthFractional si5351_ms_0_20m {
.f_src = si5351_vco_f,
.a = 20,
.b = 0,
.c = 1,
.r_div = 1,
};
constexpr auto si5351_ms_0_20m_reg = si5351_ms_0_20m.reg(0);
*/
constexpr si5351::MultisynthFractional si5351_ms_0_8m {
.f_src = si5351_vco_f,
.a = 50,
.b = 0,
.c = 1,
.r_div = 1,
};
constexpr auto si5351_ms_0_8m_reg = si5351_ms_0_8m.reg(clock_generator_output_codec);
constexpr si5351::MultisynthFractional si5351_ms_group {
.f_src = si5351_vco_f,
.a = 80, /* Don't care */
.b = 0,
.c = 1,
.r_div = 0,
};
constexpr auto si5351_ms_1_group_reg = si5351_ms_group.reg(clock_generator_output_cpld);
constexpr auto si5351_ms_2_group_reg = si5351_ms_group.reg(clock_generator_output_sgpio);
constexpr si5351::MultisynthFractional si5351_ms_10m {
.f_src = si5351_vco_f,
.a = 80,
.b = 0,
.c = 1,
.r_div = 0,
};
constexpr auto si5351_ms_3_10m_reg = si5351_ms_10m.reg(3);
constexpr si5351::MultisynthFractional si5351_ms_40m {
.f_src = si5351_vco_f,
.a = 20,
.b = 0,
.c = 1,
.r_div = 0,
};
constexpr auto si5351_ms_rffc5072 = si5351_ms_40m;
constexpr auto si5351_ms_max2837 = si5351_ms_40m;
constexpr auto si5351_ms_4_reg = si5351_ms_rffc5072.reg(clock_generator_output_first_if);
constexpr auto si5351_ms_5_reg = si5351_ms_max2837.reg(clock_generator_output_second_if);
static_assert(si5351_ms_10m.f_out() == 10000000, "MS 10MHz f_out wrong");
static_assert(si5351_ms_10m.p1() == 9728, "MS 10MHz p1 wrong");
static_assert(si5351_ms_10m.p2() == 0, "MS 10MHz p2 wrong");
static_assert(si5351_ms_10m.p3() == 1, "MS 10MHz p3 wrong");
static_assert(si5351_ms_rffc5072.f_out() == rffc5072_reference_f, "RFFC5072 reference f_out wrong");
// static_assert(si5351_ms_50m.p1() == 2048, "MS 50MHz P1 wrong");
// static_assert(si5351_ms_50m.p2() == 0, "MS 50MHz P2 wrong");
// static_assert(si5351_ms_50m.p3() == 1, "MS 50MHz P3 wrong");
static_assert(si5351_ms_max2837.f_out() == max2837_reference_f, "MAX2837 reference f_out wrong");
// static_assert(si5351_ms_50m.p1() == 2048, "MS 40MHz P1 wrong");
// static_assert(si5351_ms_50m.p2() == 0, "MS 40MHz P2 wrong");
// static_assert(si5351_ms_50m.p3() == 1, "MS 40MHz P3 wrong");
constexpr si5351::MultisynthInteger si5351_ms_int_off {
.f_src = si5351_vco_f,
.a = 255,
.r_div = 0,
};
constexpr si5351::MultisynthInteger si5351_ms_int_mcu_clkin {
.f_src = si5351_vco_f,
.a = 20,
.r_div = 0,
};
constexpr auto si5351_ms6_7_off_mcu_clkin_reg = si5351::ms6_7_reg(si5351_ms_int_off, si5351_ms_int_mcu_clkin);
static_assert(si5351_ms_int_off.f_out() == 3137254, "MS int off f_out wrong");
static_assert(si5351_ms_int_off.p1() == 255, "MS int off P1 wrong");
static_assert(si5351_ms_int_mcu_clkin.f_out() == mcu_clkin_f, "MS int MCU CLKIN f_out wrong");
// static_assert(si5351_ms_int_mcu_clkin.p1() == 20, "MS int MCU CLKIN P1 wrong");
using namespace si5351;
static constexpr ClockControl::MultiSynthSource get_reference_clock_generator_pll(const ClockManager::ReferenceSource reference_source) {
return (reference_source == ClockManager::ReferenceSource::Xtal)
? ClockControl::MultiSynthSource::PLLA
: ClockControl::MultiSynthSource::PLLB
;
}
constexpr ClockControls si5351_clock_control_common { {
{ ClockControl::ClockCurrentDrive::_6mA, ClockControl::ClockSource::MS_Self, ClockControl::ClockInvert::Normal, get_reference_clock_generator_pll(ClockManager::ReferenceSource::Xtal), ClockControl::MultiSynthMode::Fractional, ClockControl::ClockPowerDown::Power_Off },
{ ClockControl::ClockCurrentDrive::_6mA, ClockControl::ClockSource::MS_Group, ClockControl::ClockInvert::Invert, get_reference_clock_generator_pll(ClockManager::ReferenceSource::Xtal), ClockControl::MultiSynthMode::Integer, ClockControl::ClockPowerDown::Power_Off },
{ ClockControl::ClockCurrentDrive::_6mA, ClockControl::ClockSource::MS_Group, ClockControl::ClockInvert::Normal, get_reference_clock_generator_pll(ClockManager::ReferenceSource::Xtal), ClockControl::MultiSynthMode::Integer, ClockControl::ClockPowerDown::Power_Off },
{ ClockControl::ClockCurrentDrive::_8mA, ClockControl::ClockSource::MS_Self, ClockControl::ClockInvert::Normal, get_reference_clock_generator_pll(ClockManager::ReferenceSource::Xtal), ClockControl::MultiSynthMode::Integer, ClockControl::ClockPowerDown::Power_Off },
{ ClockControl::ClockCurrentDrive::_8mA, ClockControl::ClockSource::MS_Self, ClockControl::ClockInvert::Normal, get_reference_clock_generator_pll(ClockManager::ReferenceSource::Xtal), ClockControl::MultiSynthMode::Integer, ClockControl::ClockPowerDown::Power_Off },
{ ClockControl::ClockCurrentDrive::_6mA, ClockControl::ClockSource::MS_Self, ClockControl::ClockInvert::Normal, get_reference_clock_generator_pll(ClockManager::ReferenceSource::Xtal), ClockControl::MultiSynthMode::Integer, ClockControl::ClockPowerDown::Power_Off },
{ ClockControl::ClockCurrentDrive::_2mA, ClockControl::ClockSource::MS_Self, ClockControl::ClockInvert::Normal, get_reference_clock_generator_pll(ClockManager::ReferenceSource::Xtal), ClockControl::MultiSynthMode::Fractional, ClockControl::ClockPowerDown::Power_Off },
{ ClockControl::ClockCurrentDrive::_2mA, ClockControl::ClockSource::MS_Self, ClockControl::ClockInvert::Normal, get_reference_clock_generator_pll(ClockManager::ReferenceSource::Xtal), ClockControl::MultiSynthMode::Integer, ClockControl::ClockPowerDown::Power_Off },
} };
ClockManager::ReferenceSource ClockManager::get_reference_source() const {
return reference_source;
}
static void portapack_tcxo_enable() {
portapack::io.reference_oscillator(true);
/* Delay >10ms at 96MHz clock speed for reference oscillator to start. */
/* Delay an additional 1ms (arbitrary) for the clock generator to detect a signal. */
volatile uint32_t delay = 240000 + 24000;
while(delay--);
}
static void portapack_tcxo_disable() {
portapack::io.reference_oscillator(false);
}
#include "hackrf_gpio.hpp"
using namespace hackrf::one;
void ClockManager::init_peripherals() {
/* Must be sure to run the M4 core from IRC when messing with the signal
* generator that sources the GP_CLKIN signal that drives the micro-
* controller's PLL1 input.
*/
/* When booting from SPIFI, PLL1 is already running at 288MHz. */
/* TODO: Refactor this blob, there's too much knowledge about post-boot
* state, which can change depending on where we're running from -- SPIFI
* or RAM or ???
*/
// PLL1 is running at 288 MHz upon bootstrap exit.
LPC_CGU->IDIVA_CTRL.word =
( 0 << 0) /* PD */
| ( 2 << 2) /* IDIV (/3) */
| ( 1 << 11) /* AUTOBLOCK */
| ( 9 << 24) /* PLL1 */
;
const auto clk_sel = cgu::CLK_SEL::IDIVA;
set_clock(LPC_CGU->BASE_M4_CLK, clk_sel);
set_clock(LPC_CGU->BASE_PERIPH_CLK, clk_sel);
set_clock(LPC_CGU->BASE_APB1_CLK, clk_sel);
set_clock(LPC_CGU->BASE_APB3_CLK, clk_sel);
set_clock(LPC_CGU->BASE_SDIO_CLK, clk_sel);
set_clock(LPC_CGU->BASE_SSP1_CLK, clk_sel);
// IDIVC should no longer be in use.
LPC_CGU->IDIVC_CTRL.PD = 1;
i2c0.start(i2c_config_boot_clock);
}
void ClockManager::init_clock_generator() {
clock_generator.reset();
clock_generator.set_crystal_internal_load_capacitance(CrystalInternalLoadCapacitance::XTAL_CL_8pF);
clock_generator.enable_fanout();
clock_generator.set_pll_input_sources(si5351_pll_input_sources);
clock_generator.set_clock_control(
clock_generator_output_mcu_clkin,
si5351_clock_control_common[clock_generator_output_mcu_clkin].clk_src(ClockControl::ClockSource::CLKIN).clk_pdn(ClockControl::ClockPowerDown::Power_On)
);
clock_generator.enable_output(clock_generator_output_mcu_clkin);
const auto reference_source = choose_reference_source();
clock_generator.disable_output(clock_generator_output_mcu_clkin);
const auto ref_pll = get_reference_clock_generator_pll(reference_source);
const ClockControls si5351_clock_control = ClockControls { {
si5351_clock_control_common[0].ms_src(ref_pll),
si5351_clock_control_common[1].ms_src(ref_pll),
si5351_clock_control_common[2].ms_src(ref_pll),
si5351_clock_control_common[3].ms_src(ref_pll),
si5351_clock_control_common[4].ms_src(ref_pll),
si5351_clock_control_common[5].ms_src(ref_pll),
si5351_clock_control_common[6].ms_src(ref_pll),
si5351_clock_control_common[7].ms_src(ref_pll),
} };
clock_generator.set_clock_control(si5351_clock_control);
clock_generator.write(si5351_pll_a_xtal_reg);
clock_generator.write(si5351_pll_b_clkin_reg);
clock_generator.write(si5351_ms_0_8m_reg);
clock_generator.write(si5351_ms_1_group_reg);
clock_generator.write(si5351_ms_2_group_reg);
clock_generator.write(si5351_ms_3_10m_reg);
clock_generator.write(si5351_ms_4_reg);
clock_generator.write(si5351_ms_5_reg);
clock_generator.write(si5351_ms6_7_off_mcu_clkin_reg);
clock_generator.reset_plls();
// Wait for both PLLs to lock.
// TODO: Disable the unused PLL?
while((clock_generator.device_status() & 0x60) != 0);
clock_generator.set_clock_control(
clock_generator_output_mcu_clkin,
si5351_clock_control_common[clock_generator_output_mcu_clkin].ms_src(ref_pll).clk_pdn(ClockControl::ClockPowerDown::Power_On)
);
clock_generator.enable_output(clock_generator_output_mcu_clkin);
set_m4_clock_to_pll1();
}
uint32_t ClockManager::measure_gp_clkin_frequency() {
// Measure Si5351B CLKIN frequency against LPC43xx IRC oscillator
start_frequency_monitor_measurement(cgu::CLK_SEL::GP_CLKIN);
wait_For_frequency_monitor_measurement_done();
return get_frequency_monitor_measurement_in_hertz();
}
ClockManager::ReferenceSource ClockManager::detect_reference_source() {
if( clock_generator.clkin_loss_of_signal() ) {
// No external reference. Turn on PortaPack reference (if present).
portapack_tcxo_enable();
if( clock_generator.clkin_loss_of_signal() ) {
// No PortaPack reference was detected. Choose the HackRF crystal as the reference.
return ReferenceSource::Xtal;
} else {
return ReferenceSource::PortaPack;
}
} else {
return ReferenceSource::External;
}
}
ClockManager::ReferenceSource ClockManager::choose_reference_source() {
const auto detected_reference = detect_reference_source();
if( (detected_reference == ReferenceSource::External) ||
(detected_reference == ReferenceSource::PortaPack) ) {
const auto frequency = measure_gp_clkin_frequency();
if( (frequency >= 9850000) && (frequency <= 10150000) ) {
return detected_reference;
}
}
portapack_tcxo_disable();
return ReferenceSource::Xtal;
}
void ClockManager::shutdown() {
// run_from_irc();
clock_generator.reset();
}
void ClockManager::enable_codec_clocks() {
clock_generator.enable_clock(clock_generator_output_codec);
clock_generator.enable_clock(clock_generator_output_cpld);
clock_generator.enable_clock(clock_generator_output_sgpio);
/* Turn on all outputs at the same time. This probably doesn't ensure
* their phase relationships. For example, clocks that output frequencies
* in a 2:1 relationship may start with the slower clock high or low?
*/
clock_generator.enable_output_mask(
(1U << clock_generator_output_codec)
| (1U << clock_generator_output_cpld)
| (1U << clock_generator_output_sgpio)
);
}
void ClockManager::disable_codec_clocks() {
/* Turn off outputs before disabling clocks. It seems the clock needs to
* be enabled for the output to come to rest at the state specified by
* CLKx_DISABLE_STATE.
*/
clock_generator.disable_output_mask(
(1U << clock_generator_output_codec)
| (1U << clock_generator_output_cpld)
| (1U << clock_generator_output_sgpio)
);
clock_generator.disable_clock(clock_generator_output_codec);
clock_generator.disable_clock(clock_generator_output_cpld);
clock_generator.disable_clock(clock_generator_output_sgpio);
}
void ClockManager::enable_first_if_clock() {
clock_generator.enable_clock(clock_generator_output_first_if);
clock_generator.enable_output_mask(1U << clock_generator_output_first_if);
}
void ClockManager::disable_first_if_clock() {
clock_generator.disable_output_mask(1U << clock_generator_output_first_if);
clock_generator.disable_clock(clock_generator_output_first_if);
}
void ClockManager::enable_second_if_clock() {
clock_generator.enable_clock(clock_generator_output_second_if);
clock_generator.enable_output_mask(1U << clock_generator_output_second_if);
}
void ClockManager::disable_second_if_clock() {
clock_generator.disable_output_mask(1U << clock_generator_output_second_if);
clock_generator.disable_clock(clock_generator_output_second_if);
}
void ClockManager::set_sampling_frequency(const uint32_t frequency) {
/* Codec clock is at sampling frequency, CPLD and SGPIO clocks are at
* twice the frequency, and derived from the MS0 synth. So it's only
* necessary to change the MS0 synth frequency, and ensure the output
* is divided by two.
*/
clock_generator.set_ms_frequency(clock_generator_output_codec, frequency * 2, si5351_vco_f, 1);
}
void ClockManager::set_reference_ppb(const int32_t ppb) {
/* NOTE: This adjustment only affects PLLA, which is derived from the 25MHz crystal.
* It is assumed an external clock coming in to PLLB is sufficiently accurate as to not need adjustment.
* TODO: Revisit the above policy. It may be good to allow adjustment of the external reference too.
*/
constexpr uint32_t pll_multiplier = si5351_pll_xtal_25m.a;
constexpr uint32_t denominator = 1000000 / pll_multiplier;
const uint32_t new_a = (ppb >= 0) ? pll_multiplier : (pll_multiplier - 1);
const uint32_t new_b = (ppb >= 0) ? (ppb / 1000) : (denominator + (ppb / 1000));
const uint32_t new_c = (ppb == 0) ? 1 : denominator;
const si5351::PLL pll {
.f_in = si5351_inputs.f_xtal,
.a = new_a,
.b = new_b,
.c = new_c,
};
const auto pll_a_reg = pll.reg(0);
clock_generator.write(pll_a_reg);
}
void ClockManager::start_frequency_monitor_measurement(const cgu::CLK_SEL clk_sel) {
// Measure a clock input for 480 cycles of the LPC43xx IRC.
LPC_CGU->FREQ_MON = LPC_CGU_FREQ_MON_Type {
.RCNT = 480,
.FCNT = 0,
.MEAS = 0,
.CLK_SEL = toUType(clk_sel),
.RESERVED0 = 0
};
LPC_CGU->FREQ_MON.MEAS = 1;
}
void ClockManager::wait_For_frequency_monitor_measurement_done() {
// FREQ_MON mechanism fails to finish if there's no clock present on selected input?!
while(LPC_CGU->FREQ_MON.MEAS == 1);
}
uint32_t ClockManager::get_frequency_monitor_measurement_in_hertz() {
// Measurement is only as accurate as the LPC43xx IRC oscillator,
// which is +/- 1.5%. Measurement is for 480 IRC clcocks. Scale
// the cycle count to get a value in Hertz.
return LPC_CGU->FREQ_MON.FCNT * 25000;
}
void ClockManager::enable_xtal_oscillator() {
LPC_CGU->XTAL_OSC_CTRL.BYPASS = 0;
LPC_CGU->XTAL_OSC_CTRL.ENABLE = 1;
}
void ClockManager::disable_xtal_oscillator() {
LPC_CGU->XTAL_OSC_CTRL.ENABLE = 0;
}
void ClockManager::set_m4_clock_to_pll1() {
/* Incantation from LPC43xx UM10503 section 12.2.1.1, to bring the M4
* core clock speed to the 110 - 204MHz range.
*/
/* Set M4 clock to safe default speed (~12MHz IRC) */
i2c0.stop();
// All other peripherals capable of running at 204 MHz.
LPC_CGU->IDIVA_CTRL.word =
( 0 << 0) /* PD */
| ( 0 << 2) /* IDIV (/1) */
| ( 1 << 11) /* AUTOBLOCK */
| ( 1 << 24) /* IRC */
;
systick_adjust_period(systick_count_irc);
halLPCSetSystemClock(clock_source_irc_f);
// SPIFI clock
LPC_CGU->IDIVB_CTRL.word =
( 0 << 0) /* PD */
| ( 0 << 2) /* IDIV (/1) */
| ( 1 << 11) /* AUTOBLOCK */
| ( 1 << 24) /* IRC */
;
/* Step into the 90-110MHz M4 clock range */
/* Fclkin = 40M
* /N=2 = 20M = PFDin
* Fcco = PFDin * (M=10) = 200M
* Fclk = Fcco / (2*(P=1)) = 100M
*/
cgu::pll1::ctrl({
.pd = 1,
.bypass = 0,
.fbsel = 0,
.direct = 0,
.psel = 0,
.autoblock = 1,
.nsel = 1,
.msel = 9,
.clk_sel = cgu::CLK_SEL::GP_CLKIN,
});
cgu::pll1::enable();
while( !cgu::pll1::is_locked() );
/* Switch M4 clock to PLL1 running at intermediate rate */
// All other peripherals capable of running at 204 MHz.
LPC_CGU->IDIVA_CTRL.word =
( 0 << 0) /* PD */
| ( 0 << 2) /* IDIV (/1) */
| ( 1 << 11) /* AUTOBLOCK */
| ( 9 << 24) /* PLL1 */
;
systick_adjust_period(systick_count_pll1_step);
halLPCSetSystemClock(clock_source_pll1_step_f);
// SPIFI clock
LPC_CGU->IDIVB_CTRL.word =
( 0 << 0) /* PD */
| ( 0 << 2) /* IDIV (/1) */
| ( 1 << 11) /* AUTO BLOCK */
| ( 9 << 24) /* PLL1 */
;
/* Delay >50us at 90-110MHz clock speed */
volatile uint32_t delay = 1400;
while(delay--);
// SPIFI clock
LPC_CGU->IDIVB_CTRL.word =
( 0 << 0) /* PD */
| ( 1 << 2) /* IDIV (/2) */
| ( 1 << 11) /* AUTOBLOCK */
| ( 9 << 24) /* PLL1 */
;
/* Remove /2P divider from PLL1 output to achieve full speed */
cgu::pll1::direct();
systick_adjust_period(systick_count_pll1);
halLPCSetSystemClock(clock_source_pll1_f);
i2c0.start(i2c_config_fast_clock);
}
void ClockManager::power_down_pll1() {
/* Power down PLL1 if not needed */
cgu::pll1::disable();
}
void ClockManager::start_audio_pll() {
cgu::pll0audio::ctrl({
.pd = 1,
.bypass = 0,
.directi = 0,
.directo = 0,
.clken = 0,
.frm = 0,
.autoblock = 1,
.pllfract_req = 0,
.sel_ext = 1,
.mod_pd = 1,
.clk_sel = cgu::CLK_SEL::GP_CLKIN,
});
/* For 40MHz clock source, 48kHz audio rate, 256Fs MCLK:
* Fout=12.288MHz, Fcco=491.52MHz
* PSEL=20, NSEL=125, MSEL=768
* PDEC=31, NDEC=45, MDEC=30542
*/
cgu::pll0audio::mdiv({
.mdec = 30542,
});
cgu::pll0audio::np_div({
.pdec = 31,
.ndec = 45,
});
cgu::pll0audio::frac({
.pllfract_ctrl = 0,
});
cgu::pll0audio::power_up();
while( !cgu::pll0audio::is_locked() );
cgu::pll0audio::clock_enable();
set_base_audio_clock_divider(1);
set_clock(LPC_CGU->BASE_AUDIO_CLK, cgu::CLK_SEL::IDIVC);
}
void ClockManager::set_base_audio_clock_divider(const size_t divisor) {
LPC_CGU->IDIVC_CTRL.word =
(0 << 0)
| ((divisor - 1) << 2)
| (1 << 11)
| (toUType(cgu::CLK_SEL::PLL0AUDIO) << 24)
;
}
void ClockManager::stop_audio_pll() {
cgu::pll0audio::clock_disable();
cgu::pll0audio::power_down();
while( cgu::pll0audio::is_locked() );
}
void ClockManager::stop_peripherals() {
i2c0.stop();
}