mayhem-firmware/firmware/common/lpc43xx_cpp.hpp
Maescool 920b98f7c9 Upstream merge to make new revision of PortaPack work (#206)
* Power: Turn off additional peripheral clock branches.

* Update schematic with new symbol table and KiCad standard symbols.
Fix up wires.

* Schematic: Update power net labels.

* Schematic: Update footprint names to match library changes.

* Schematic: Update header vendor and part numbers.

* Schematic: Specify (arbitrary) value for PDN# net.

* Schematic: Remove fourth fiducial. Not standard practice, and was taking up valuable board space.

* Schematic: Add reference oscillator -- options for clipped sine or HCMOS output.

* Schematic: Update copyright year.

* Schematic: Remove CLKOUT to CPLD. It was a half-baked idea.

* Schematic: Add (experimental) GPS circuit.
Add note about charging circuit.
Update date and revision to match PCB.

* PCB: Update from schematic change: now revision 20180819.
Diff was extensive due to net renumbering...

* PCB: Fix GPS courtyard to accommodate crazy solder paste recommendation in integration manual.
PCB: Address DRC clearance violation between via and oscillator pad.

* PCB: Update copyright on drawing.

* Update schematic and PCB date and revision.

* gitignore: Sublime Text editor project/workspace files

* Power: Power up or power down peripheral clock at appropriate times, so firmware doesn't freeze...

* Clocking: Fix incorrect shift for CGU IDIVx_CTRL.PD field.

* LPC43xx: Add CGU IDIVx struct/union type.

* Power: Switch off unused IDIV dividers. Make note of active IDIVs and their use.

* HackRF Mode: Upgrade firmware to 2018.01.1 (API 1.02)

* MAX V CPLD: Refactor class to look more like Xilinx CoolRunner II CPLD class.

* MAX V CPLD: Add BYPASS, SAMPLE support.
Rename enter_isp -> enable, exit_isp -> disable.
Use SAMPLE at start of flash process, which somehow addresses the problem where CFM wouldn't load into SRAM (and become the active bitstream) after flashing.

* MAX V CPLD: Reverse verify data checking logic to make it a little faster.

* CPLD: After reprogramming flash, immediately clamp I/O signals, load to SRAM, and "execute" the new bitstream.

* Si5351: Refactor code, make one of the registers more type-safe.
Clock Manager: Track selected reference clock source for later use in user interface.

* Clock Manager: Add note about PPM only affecting Si5351C PLLA, which always runs from the HackRF 25MHz crystal.
It is assumed an external clock does not need adjustment, though I am open to being convinced otherwise...

* PPM UI: Show "EXT" when showing PPM adjustment and reference clock is external.

* CPLD: Add pins and logic for new PortaPack hardware feature(s).

* CPLD: Bitstream to support new hardware features.

* Clock Generator: Add a couple more setter methods for ClockControl registers.

* Clock Manager: Use shared MCU CLKIN clock control configuration constant.

* Clock Manager: Reduce MCU CLKIN driver current. 2mA should be plenty.

* Clock Manager: Remove redundant clock generator output enable.

* Bootstrap: Remove unnecessary ldscript hack to locate SPIFI mode change code in RAM.

* Bootstrap: Get CPU operating at max frequency as soon as possible.
Update SPIFI speed comment.
Make some more LPC43xx types into unions with uint32_t.

* Bootstrap: Explicitly configure IDIVB for SPIFI, despite LPC43xx bootloader setting it.

* Clock Manager: Init peripherals before CPLD reconfig. Do the clock generator setup after, so we can check presence of PortaPack reference clock with the help of the latest CPLD bitstream.

* Clock Manager: Reverse sense of conditional that determines crystal or non-crystal reference source. This is for an expected upcoming change where multiple external options can be differentiated.

* Bootstrap: Consolidate clock configuration, update SPIFI rate comment.

* Clock Manager: Use IDIVA for clock source for all peripherals, instead of PLL1. Should make switching easier going forward.
Don't use IRC as clock during initial clock manager configuration. Until we switch to GP_CLKIN, we should go flat out...

* ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution.

* PortaPack IO: Expose method to set reference oscillator enable pin.

* Pin configuration: Do SPIFI pin config with other pins, in preparation for eliminating separate bootloader.

* Pin configuration: Disable input buffers on pins that are never read.

* Revert "ChibiOS M0: Change default clock speed to 204MHz, since bootstrap now maxes out clock speed before starting M0 execution."

This reverts commit c0e2bb6cc4cc656769323bdbb8ee5a16d2d5bb03.

* Remove unused board files.

* Add LPC43xx functions.

* chibios: Replace code with per-peripheral structs defining clocks, interrupts, and reset bits.

* LPC43xx: Add MCPWM peripheral struct.

* clock generator: Use recommended PLL reset register value.

Datasheet recommends a value. AN619 is quiet on the topic, claims the low nibble is default 0b0000.

* GPIO: Tweak masking of SCU function.

I don't remember why I thought this was necessary...

* HAL: Explicitly turn on timer peripheral clocks used as systicks, during init.

* SCU: Add struct to hold pin configuration.

* PAL: Add functions to address The Glitch.

https://greatscottgadgets.com/2018/02-28-we-fixed-the-glitch/

* PAL/board: New IO initialization code

Declare initial state for SCU pin config, GPIOs. Apply initial state during PAL init. Perform VAA slow turn-on to address The Glitch.

* Merge M0 and M4 to eliminate need for bootstrap firmware

During _early_init, detect if we're running on the M4 or M0.
If M4: do M4-specific core initialization, reset peripherals, speed up SPIFI clock, start M0, go to sleep.
If M0: do all the other things.

* Pins: Miscellaneous SCU configuration tweaks.

* Little code clarity improvement.

* bootstrap: Remove, not necessary.

* Clock Manager: Large re-working to support external references.

* Fix merge conflicts
2019-01-11 06:56:21 +00:00

567 lines
12 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef __LPC43XX_CPP_H__
#define __LPC43XX_CPP_H__
#include <cstdint>
#include <hal.h>
#include "utility.hpp"
namespace lpc43xx {
#if defined(LPC43XX_M4)
namespace m4 {
static inline bool flag_saturation() {
return __get_APSR() & (1U << 27);
}
static inline void clear_flag_saturation() {
uint32_t flags = 1;
__asm volatile ("MSR APSR_nzcvqg, %0" : : "r" (flags));
}
} /* namespace m4 */
#endif
namespace creg {
static_assert(offsetof(LPC_CREG_Type, CREG0) == 0x004, "CREG0 offset wrong");
static_assert(offsetof(LPC_CREG_Type, M4MEMMAP) == 0x100, "M4MEMMAP offset wrong");
static_assert(offsetof(LPC_CREG_Type, CREG5) == 0x118, "CREG5 offset wrong");
static_assert(offsetof(LPC_CREG_Type, CHIPID) == 0x200, "CHIPID offset wrong");
static_assert(offsetof(LPC_CREG_Type, M0SUBMEMMAP) == 0x308, "M0SUBMEMMAP offset wrong");
static_assert(offsetof(LPC_CREG_Type, M0APPTXEVENT) == 0x400, "M0APPTXEVENT offset wrong");
static_assert(offsetof(LPC_CREG_Type, USB0FLADJ) == 0x500, "USB0FLADJ offset wrong");
static_assert(offsetof(LPC_CREG_Type, USB1FLADJ) == 0x600, "USB1FLADJ offset wrong");
namespace m4txevent {
#if defined(LPC43XX_M0)
inline void enable() {
nvicEnableVector(M4CORE_IRQn, CORTEX_PRIORITY_MASK(LPC43XX_M4TXEVENT_IRQ_PRIORITY));
}
inline void disable() {
nvicDisableVector(M4CORE_IRQn);
}
#endif
#if defined(LPC43XX_M4)
inline void assert() {
__SEV();
}
#endif
inline void clear() {
LPC_CREG->M4TXEVENT = 0;
}
} /* namespace m4txevent */
namespace m0apptxevent {
#if defined(LPC43XX_M4)
inline void enable() {
nvicEnableVector(M0CORE_IRQn, CORTEX_PRIORITY_MASK(LPC43XX_M0APPTXEVENT_IRQ_PRIORITY));
}
inline void disable() {
nvicDisableVector(M0CORE_IRQn);
}
#endif
#if defined(LPC43XX_M0)
inline void assert() {
__SEV();
}
#endif
inline void clear() {
LPC_CREG->M0APPTXEVENT = 0;
}
} /* namespace */
} /* namespace creg */
namespace cgu {
enum class CLK_SEL : uint8_t {
RTC_32KHZ = 0x00,
IRC = 0x01,
ENET_RX_CLK = 0x02,
ENET_TX_CLK = 0x03,
GP_CLKIN = 0x04,
XTAL = 0x06,
PLL0USB = 0x07,
PLL0AUDIO = 0x08,
PLL1 = 0x09,
IDIVA = 0x0c,
IDIVB = 0x0d,
IDIVC = 0x0e,
IDIVD = 0x0f,
IDIVE = 0x10,
};
struct IDIV_CTRL {
uint32_t pd;
uint32_t idiv;
uint32_t autoblock;
CLK_SEL clk_sel;
constexpr operator uint32_t() const {
return
((pd & 1) << 0)
| ((idiv & 3) << 2)
| ((autoblock & 1) << 11)
| ((toUType(clk_sel) & 0x1f) << 24)
;
}
};
namespace pll0audio {
struct CTRL {
uint32_t pd;
uint32_t bypass;
uint32_t directi;
uint32_t directo;
uint32_t clken;
uint32_t frm;
uint32_t autoblock;
uint32_t pllfract_req;
uint32_t sel_ext;
uint32_t mod_pd;
CLK_SEL clk_sel;
constexpr operator uint32_t() const {
return
((pd & 1) << 0)
| ((bypass & 1) << 1)
| ((directi & 1) << 2)
| ((directo & 1) << 3)
| ((clken & 1) << 4)
| ((frm & 1) << 6)
| ((autoblock & 1) << 11)
| ((pllfract_req & 1) << 12)
| ((sel_ext & 1) << 13)
| ((mod_pd & 1) << 14)
| ((toUType(clk_sel) & 0x1f) << 24)
;
}
};
struct MDIV {
uint32_t mdec;
constexpr operator uint32_t() const {
return ((mdec & 0x1ffff) << 0);
}
};
struct NP_DIV {
uint32_t pdec;
uint32_t ndec;
constexpr operator uint32_t() const {
return
((pdec & 0x7f) << 0)
| ((ndec & 0x3ff) << 12)
;
}
};
struct FRAC {
uint32_t pllfract_ctrl;
constexpr operator uint32_t() const {
return ((pllfract_ctrl & 0x3fffff) << 0);
}
};
inline void ctrl(const CTRL& value) {
LPC_CGU->PLL0AUDIO_CTRL = value;
}
inline void mdiv(const MDIV& value) {
LPC_CGU->PLL0AUDIO_MDIV = value;
}
inline void np_div(const NP_DIV& value) {
LPC_CGU->PLL0AUDIO_NP_DIV = value;
}
inline void frac(const FRAC& value) {
LPC_CGU->PLL0AUDIO_FRAC = value;
}
inline void power_up() {
LPC_CGU->PLL0AUDIO_CTRL &= ~(1U << 0);
}
inline void power_down() {
LPC_CGU->PLL0AUDIO_CTRL |= (1U << 0);
}
inline bool is_locked() {
return LPC_CGU->PLL0AUDIO_STAT & (1U << 0);
}
inline void clock_enable() {
LPC_CGU->PLL0AUDIO_CTRL |= (1U << 4);
}
inline void clock_disable() {
LPC_CGU->PLL0AUDIO_CTRL &= ~(1U << 4);
}
} /* namespace pll0audio */
namespace pll1 {
struct CTRL {
uint32_t pd;
uint32_t bypass;
uint32_t fbsel;
uint32_t direct;
uint32_t psel;
uint32_t autoblock;
uint32_t nsel;
uint32_t msel;
CLK_SEL clk_sel;
constexpr operator uint32_t() const {
return
((pd & 1) << 0)
| ((bypass & 1) << 1)
| ((fbsel & 1) << 6)
| ((direct & 1) << 7)
| ((psel & 3) << 8)
| ((autoblock & 1) << 11)
| ((nsel & 3) << 12)
| ((msel & 0xff) << 16)
| ((toUType(clk_sel) & 0x1f) << 24)
;
}
};
inline void ctrl(const CTRL& value) {
LPC_CGU->PLL1_CTRL = value;
}
inline void enable() {
LPC_CGU->PLL1_CTRL &= ~(1U << 0);
}
inline void disable() {
LPC_CGU->PLL1_CTRL |= (1U << 0);
}
inline void direct() {
LPC_CGU->PLL1_CTRL |= (1U << 7);
}
inline bool is_locked() {
return LPC_CGU->PLL1_STAT & (1U << 0);
}
} /* namespace pll1 */
} /* namespace cgu */
namespace ccu1 {
static_assert(offsetof(LPC_CCU1_Type, CLK_ADCHS_STAT) == 0xb04, "CLK_ADCHS_STAT offset wrong");
} /* namespace ccu1 */
namespace rgu {
enum class Reset {
CORE = 0,
PERIPH = 1,
MASTER = 2,
WWDT = 4,
CREG = 5,
BUS = 8,
SCU = 9,
M0_SUB = 12,
M4_RST = 13,
LCD = 16,
USB0 = 17,
USB1 = 18,
DMA = 19,
SDIO = 20,
EMC = 21,
ETHERNET = 22,
FLASHA = 25,
EEPROM = 27,
GPIO = 28,
FLASHB = 29,
TIMER0 = 32,
TIMER1 = 33,
TIMER2 = 34,
TIMER3 = 35,
RITIMER = 36,
SCT = 37,
MOTOCONPWM = 38,
QEI = 39,
ADC0 = 40,
ADC1 = 41,
DAC = 42,
UART0 = 44,
UART1 = 45,
UART2 = 46,
UART3 = 47,
I2C0 = 48,
I2C1 = 49,
SSP0 = 50,
SSP1 = 51,
I2S = 52,
SPIFI = 53,
CAN1 = 54,
CAN0 = 55,
M0APP = 56,
SGPIO = 57,
SPI = 58,
ADCHS = 60,
};
enum class Status {
NotActive = 0b00,
ActivatedByRGUInput = 0b01,
ActivatedBySoftware = 0b11,
};
inline void reset(const Reset reset) {
LPC_RGU->RESET_CTRL[toUType(reset) >> 5] = (1U << (toUType(reset) & 0x1f));
}
inline void reset_mask(const uint64_t mask) {
LPC_RGU->RESET_CTRL[0] = mask & 0xffffffffU;
LPC_RGU->RESET_CTRL[1] = mask >> 32;
}
inline Status status(const Reset reset) {
return static_cast<Status>(
(LPC_RGU->RESET_STATUS[toUType(reset) >> 4] >> ((toUType(reset) & 0xf) * 2)) & 3
);
}
inline bool active(const Reset reset) {
return (LPC_RGU->RESET_ACTIVE_STATUS[toUType(reset) >> 5] >> (toUType(reset) & 0x1f)) & 1;
}
inline uint32_t external_status(const Reset reset) {
return LPC_RGU->RESET_EXT_STAT[toUType(reset)];
}
inline uint64_t operator|(Reset r1, Reset r2) {
return (1ULL << toUType(r1)) | (1ULL << toUType(r2));
}
inline uint64_t operator|(uint64_t m, Reset r) {
return m | (1ULL << toUType(r));
}
static_assert(offsetof(LPC_RGU_Type, RESET_CTRL[0]) == 0x100, "RESET_CTRL[0] offset wrong");
static_assert(offsetof(LPC_RGU_Type, RESET_STATUS[0]) == 0x110, "RESET_STATUS[0] offset wrong");
static_assert(offsetof(LPC_RGU_Type, RESET_ACTIVE_STATUS[0]) == 0x150, "RESET_ACTIVE_STATUS[0] offset wrong");
static_assert(offsetof(LPC_RGU_Type, RESET_EXT_STAT[1]) == 0x404, "RESET_EXT_STAT[1] offset wrong");
static_assert(offsetof(LPC_RGU_Type, RESET_EXT_STAT[60]) == 0x4f0, "RESET_EXT_STAT[60] offset wrong");
} /* namespace rgu */
namespace scu {
struct SFS {
uint32_t mode;
uint32_t epd;
uint32_t epun;
uint32_t ehs;
uint32_t ezi;
uint32_t zif;
constexpr operator uint32_t() const {
return
((mode & 7) << 0)
| ((epd & 1) << 3)
| ((epun & 1) << 4)
| ((ehs & 1) << 5)
| ((ezi & 1) << 6)
| ((zif & 1) << 7)
;
}
};
static_assert(offsetof(LPC_SCU_Type, PINTSEL0) == 0xe00, "PINTSEL0 offset wrong");
} /* namespace scu */
namespace sgpio {
static_assert(offsetof(LPC_SGPIO_Type, MASK_A) == 0x0200, "SGPIO MASK_A offset wrong");
static_assert(offsetof(LPC_SGPIO_Type, GPIO_OUTREG) == 0x0214, "SGPIO GPIO_OUTREG offset wrong");
static_assert(offsetof(LPC_SGPIO_Type, CTRL_DISABLE) == 0x0220, "SGPIO CTRL_DISABLE offset wrong");
static_assert(offsetof(LPC_SGPIO_Type, CLR_EN_0) == 0x0f00, "SGPIO CLR_EN_0 offset wrong");
static_assert(offsetof(LPC_SGPIO_Type, CLR_EN_1) == 0x0f20, "SGPIO CLR_EN_1 offset wrong");
static_assert(offsetof(LPC_SGPIO_Type, CLR_EN_2) == 0x0f40, "SGPIO CLR_EN_2 offset wrong");
static_assert(offsetof(LPC_SGPIO_Type, CLR_EN_3) == 0x0f60, "SGPIO CLR_EN_3 offset wrong");
static_assert(offsetof(LPC_SGPIO_Type, SET_STATUS_3) == 0x0f74, "SGPIO SET_STATUS_3 offset wrong");
static_assert(sizeof(LPC_SGPIO_Type) == 0x0f78, "SGPIO type size wrong");
} /* namespace sgpio */
namespace gpdma {
static_assert(offsetof(LPC_GPDMA_Type, SYNC) == 0x034, "GPDMA SYNC offset wrong");
static_assert(offsetof(LPC_GPDMA_Type, CH[0]) == 0x100, "GPDMA CH[0] offset wrong");
static_assert(offsetof(LPC_GPDMA_Type, CH[7]) == 0x1e0, "GPDMA CH[7] offset wrong");
} /* namespace gpdma */
namespace sdmmc {
static_assert(offsetof(LPC_SDMMC_Type, RESP0) == 0x030, "SDMMC RESP0 offset wrong");
static_assert(offsetof(LPC_SDMMC_Type, TCBCNT) == 0x05c, "SDMMC TCBCNT offset wrong");
static_assert(offsetof(LPC_SDMMC_Type, RST_N) == 0x078, "SDMMC RST_N offset wrong");
static_assert(offsetof(LPC_SDMMC_Type, BMOD) == 0x080, "SDMMC BMOD offset wrong");
static_assert(offsetof(LPC_SDMMC_Type, DATA) == 0x100, "SDMMC DATA offset wrong");
} /* namespace sdmmc */
namespace spifi {
struct CTRL {
uint32_t timeout;
uint32_t cshigh;
uint32_t d_prftch_dis;
uint32_t inten;
uint32_t mode3;
uint32_t prftch_dis;
uint32_t dual;
uint32_t rfclk;
uint32_t fbclk;
uint32_t dmaen;
constexpr operator uint32_t() const {
return
((timeout & 0xffff) << 0)
| ((cshigh & 1) << 16)
| ((d_prftch_dis & 1) << 21)
| ((inten & 1) << 22)
| ((mode3 & 1) << 23)
| ((prftch_dis & 1) << 27)
| ((dual & 1) << 28)
| ((rfclk & 1) << 29)
| ((fbclk & 1) << 30)
| ((dmaen & 1) << 31)
;
}
};
static_assert(offsetof(LPC_SPIFI_Type, STAT) == 0x01c, "SPIFI STAT offset wrong");
} /* namespace spifi */
namespace timer {
static_assert(offsetof(LPC_TIMER_Type, MR[0]) == 0x018, "TIMER MR[0] offset wrong");
static_assert(offsetof(LPC_TIMER_Type, CCR) == 0x028, "TIMER CCR offset wrong");
static_assert(offsetof(LPC_TIMER_Type, EMR) == 0x03c, "TIMER EMR offset wrong");
static_assert(offsetof(LPC_TIMER_Type, CTCR) == 0x070, "TIMER CTCR offset wrong");
} /* namespace timer */
namespace rtc {
namespace interrupt {
inline void clear_all() {
LPC_RTC->ILR = (1U << 1) | (1U << 0);
}
inline void enable_second_inc() {
LPC_RTC->CIIR = (1U << 0);
}
} /* namespace */
#if HAL_USE_RTC
struct RTC : public RTCTime {
constexpr RTC(
uint32_t year,
uint32_t month,
uint32_t day,
uint32_t hour,
uint32_t minute,
uint32_t second
) : RTCTime {
(year << 16) | (month << 8) | (day << 0),
(hour << 16) | (minute << 8) | (second << 0)
}
{
}
constexpr RTC(
) : RTCTime { 0, 0 }
{
}
uint16_t year() const {
return (tv_date >> 16) & 0xfff;
}
uint8_t month() const {
return (tv_date >> 8) & 0x00f;
}
uint8_t day() const {
return (tv_date >> 0) & 0x01f;
}
uint8_t hour() const {
return (tv_time >> 16) & 0x01f;
}
uint8_t minute() const {
return (tv_time >> 8) & 0x03f;
}
uint8_t second() const {
return (tv_time >> 0) & 0x03f;
}
};
#endif
static_assert(offsetof(LPC_RTC_Type, CCR) == 0x008, "RTC CCR offset wrong");
static_assert(offsetof(LPC_RTC_Type, ASEC) == 0x060, "RTC ASEC offset wrong");
} /* namespace rtc */
} /* namespace lpc43xx */
#endif/*__LPC43XX_CPP_H__*/