Kyle Reed 6574272ca8
Freqman improvements (#1276)
* Show .1 MHz in pretty freqman string

* Refactor load to user FreqmanDB

* Recon file parsing cleanup

* use strtol for parse_int

* recon file cleanup

* Fix bugs in Recon changes

* PR feedback

---------

Co-authored-by: kallanreed <kallanreed@noreply.github.com>
2023-07-17 11:43:37 -07:00

530 lines
16 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
* Copyright (C) 2023 gullradriel, Nilorea Studio Inc.
* Copyright (C) 2023 Kyle Reed
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "convert.hpp"
#include "file.hpp"
#include "file_reader.hpp"
#include "freqman_db.hpp"
#include "string_format.hpp"
#include "tone_key.hpp"
#include "utility.hpp"
#include <array>
#include <cctype>
#include <string_view>
#include <vector>
namespace fs = std::filesystem;
const std::filesystem::path freqman_dir{u"/FREQMAN"};
const std::filesystem::path freqman_extension{u".TXT"};
// NB: Don't include UI headers to keep this code unit testable.
using option_t = std::pair<std::string, int32_t>;
using options_t = std::vector<option_t>;
options_t freqman_modulations = {
{"AM", 0},
{"NFM", 1},
{"WFM", 2},
{"SPEC", 3},
};
options_t freqman_bandwidths[4] = {
{
// AM
{"DSB 9k", 0},
{"DSB 6k", 1},
{"USB+3k", 2},
{"LSB-3k", 3},
{"CW", 4},
},
{
// NFM
{"8k5", 0},
{"11k", 1},
{"16k", 2},
},
{
// WFM
{"40k", 2},
{"180k", 1},
{"200k", 0},
},
{
// SPEC -- TODO: these should be indexes.
{"8k5", 8500},
{"11k", 11000},
{"16k", 16000},
{"25k", 25000},
{"50k", 50000},
{"100k", 100000},
{"250k", 250000},
{"500k", 500000}, /* Previous Limit bandwith Option with perfect micro SD write .C16 format operaton.*/
{"600k", 600000}, /* That extended option is still possible to record with FW version Mayhem v1.41 (< 2,5MB/sec) */
{"650k", 650000},
{"750k", 750000}, /* From this BW onwards, the LCD is ok, but the recorded file is decimated, (not real file size) */
{"1100k", 1100000},
{"1750k", 1750000},
{"2000k", 2000000},
{"2500k", 2500000},
{"2750k", 2750000}, // That is our max Capture option, to keep using later / 8 decimation (22Mhz sampling ADC)
},
};
// TODO: these should be indexes.
options_t freqman_steps = {
{"0.1kHz ", 100},
{"1kHz ", 1000},
{"5kHz (SA AM)", 5000},
{"6.25kHz(NFM)", 6250},
{"8.33kHz(AIR)", 8330},
{"9kHz (EU AM)", 9000},
{"10kHz(US AM)", 10000},
{"12.5kHz(NFM)", 12500},
{"15kHz (HFM)", 15000},
{"25kHz (N1)", 25000},
{"30kHz (OIRT)", 30000},
{"50kHz (FM1)", 50000},
{"100kHz (FM2)", 100000},
{"250kHz (N2)", 250000},
{"500kHz (WFM)", 500000},
{"1MHz ", 1000000},
};
// TODO: these should be indexes.
options_t freqman_steps_short = {
{"0.1kHz", 100},
{"1kHz", 1000},
{"5kHz", 5000},
{"6.25kHz", 6250},
{"8.33kHz", 8330},
{"9kHz", 9000},
{"10kHz", 10000},
{"12.5kHz", 12500},
{"15kHz", 15000},
{"25kHz", 25000},
{"30kHz", 30000},
{"50kHz", 50000},
{"100kHz", 100000},
{"250kHz", 250000},
{"500kHz", 500000},
{"1MHz", 1000000},
};
uint8_t find_by_name(const options_t& options, std::string_view name) {
for (auto ix = 0u; ix < options.size(); ++ix)
if (options[ix].first == name)
return ix;
return freqman_invalid_index;
}
const option_t* find_by_index(const options_t& options, freqman_index_t index) {
if (index < options.size())
return &options[index];
else
return nullptr;
}
/* Impl for next round of changes.
*template <typename T, size_t N>
*const T* find_by_name(const std::array<T, N>& info, std::string_view name) {
* for (const auto& it : info) {
* if (it.name == name)
* return &it;
* }
*
* return nullptr;
*}
*/
bool operator==(const freqman_entry& lhs, const freqman_entry& rhs) {
auto equal = lhs.type == rhs.type &&
lhs.frequency_a == rhs.frequency_a &&
lhs.description == rhs.description &&
lhs.modulation == rhs.modulation &&
lhs.bandwidth == rhs.bandwidth;
if (!equal)
return false;
if (lhs.type == freqman_type::Range) {
equal = lhs.frequency_b == rhs.frequency_b &&
lhs.step == rhs.step;
} else if (lhs.type == freqman_type::HamRadio) {
equal = lhs.frequency_b == rhs.frequency_b &&
lhs.tone == rhs.tone;
}
return equal;
}
std::string freqman_entry_get_modulation_string(freqman_index_t modulation) {
if (auto opt = find_by_index(freqman_modulations, modulation))
return opt->first;
return {};
}
std::string freqman_entry_get_bandwidth_string(freqman_index_t modulation, freqman_index_t bandwidth) {
if (modulation < freqman_modulations.size()) {
if (auto opt = find_by_index(freqman_bandwidths[modulation], bandwidth))
return opt->first;
}
return {};
}
std::string freqman_entry_get_step_string(freqman_index_t step) {
if (auto opt = find_by_index(freqman_steps, step))
return opt->first;
return {};
}
std::string freqman_entry_get_step_string_short(freqman_index_t step) {
if (auto opt = find_by_index(freqman_steps_short, step))
return opt->first;
return {};
}
const std::filesystem::path get_freqman_path(const std::string& stem) {
return freqman_dir / stem + freqman_extension;
}
bool create_freqman_file(const std::string& file_stem) {
auto fs_error = make_new_file(get_freqman_path(file_stem));
return fs_error.ok();
}
bool load_freqman_file(const std::string& file_stem, freqman_db& db, freqman_load_options options) {
return parse_freqman_file(get_freqman_path(file_stem), db, options);
}
void delete_freqman_file(const std::string& file_stem) {
delete_file(get_freqman_path(file_stem));
}
std::string pretty_string(const freqman_entry& entry, size_t max_length) {
std::string str;
switch (entry.type) {
case freqman_type::Single:
str = to_string_short_freq(entry.frequency_a) + "M: " + entry.description;
break;
case freqman_type::Range:
str = to_string_rounded_freq(entry.frequency_a, 1) + "M-" +
to_string_rounded_freq(entry.frequency_b, 1) + "M: " + entry.description;
break;
case freqman_type::HamRadio:
str = "R:" + to_string_rounded_freq(entry.frequency_a, 1) + "M,T:" +
to_string_rounded_freq(entry.frequency_b, 1) + "M: " + entry.description;
break;
case freqman_type::Raw:
str = entry.description;
break;
default:
str = "UNK:" + entry.description;
break;
}
// Truncate. '+' indicates if string has been truncated.
if (str.size() > max_length)
return str.substr(0, max_length - 1) + "+";
return str;
}
std::string to_freqman_string(const freqman_entry& entry) {
std::string serialized;
serialized.reserve(0x80);
// Append a key=value to the string.
auto append_field = [&serialized](std::string_view name, std::string_view value) {
if (!serialized.empty())
serialized += ",";
serialized += std::string{name} + "=" + std::string{value};
};
switch (entry.type) {
case freqman_type::Single:
append_field("f", to_string_dec_uint64(entry.frequency_a));
break;
case freqman_type::Range:
append_field("a", to_string_dec_uint64(entry.frequency_a));
append_field("b", to_string_dec_uint64(entry.frequency_b));
if (is_valid(entry.step))
append_field("s", freqman_entry_get_step_string_short(entry.step));
break;
case freqman_type::HamRadio:
append_field("r", to_string_dec_uint64(entry.frequency_a));
append_field("t", to_string_dec_uint64(entry.frequency_b));
if (is_valid(entry.tone))
append_field("c", tonekey::tone_key_value_string(entry.tone));
break;
case freqman_type::Raw:
return entry.description;
default:
return {};
};
if (is_valid(entry.modulation) && entry.modulation < freqman_modulations.size()) {
append_field("m", freqman_entry_get_modulation_string(entry.modulation));
if (is_valid(entry.bandwidth) && (unsigned)entry.bandwidth < freqman_bandwidths[entry.modulation].size())
append_field("bw", freqman_entry_get_bandwidth_string(entry.modulation, entry.bandwidth));
}
if (entry.description.size() > 0)
append_field("d", entry.description);
serialized.shrink_to_fit();
return serialized;
}
freqman_index_t parse_tone_key(std::string_view value) {
// Split into whole and fractional parts.
auto parts = split_string(value, '.');
int32_t tone_freq = 0;
int32_t whole_part = 0;
parse_int(parts[0], whole_part);
// Tones are stored as frequency / 100 for some reason.
// E.g. 14572 would be 145.7 (NB: 1s place is dropped).
// TODO: Might be easier to just store the codes?
// Multiply the whole part by 100 to get the tone frequency.
tone_freq = whole_part * 100;
// Add the fractional part, if present.
if (parts.size() > 1) {
auto c = parts[1].front();
auto digit = std::isdigit(c) ? c - '0' : 0;
tone_freq += digit * 10;
}
return static_cast<freqman_index_t>(tonekey::tone_key_index_by_value(tone_freq));
}
bool parse_freqman_entry(std::string_view str, freqman_entry& entry) {
if (str.empty() || str[0] == '#')
return false;
entry = freqman_entry{};
auto cols = split_string(str, ',');
for (auto col : cols) {
if (col.empty())
continue;
auto pair = split_string(col, '=');
if (pair.size() != 2)
continue;
auto key = pair[0];
auto value = pair[1];
if (key == "a") {
entry.type = freqman_type::Range;
parse_int(value, entry.frequency_a);
} else if (key == "b") {
parse_int(value, entry.frequency_b);
} else if (key == "bw") {
// NB: Requires modulation to be set first
if (entry.modulation < std::size(freqman_bandwidths)) {
entry.bandwidth = find_by_name(freqman_bandwidths[entry.modulation], value);
}
} else if (key == "c") {
entry.tone = parse_tone_key(value);
} else if (key == "d") {
entry.description = trim(value);
} else if (key == "f") {
entry.type = freqman_type::Single;
parse_int(value, entry.frequency_a);
} else if (key == "m") {
entry.modulation = find_by_name(freqman_modulations, value);
} else if (key == "r") {
entry.type = freqman_type::HamRadio;
parse_int(value, entry.frequency_a);
} else if (key == "s") {
entry.step = find_by_name(freqman_steps_short, value);
} else if (key == "t") {
parse_int(value, entry.frequency_b);
}
}
return is_valid(entry);
}
bool parse_freqman_file(const fs::path& path, freqman_db& db, freqman_load_options options) {
FreqmanDB freqman_db;
freqman_db.set_read_raw(false); // Don't return malformed lines.
if (!freqman_db.open(path))
return false;
// Attempt to avoid a re-alloc if possible.
db.clear();
db.reserve(freqman_db.entry_count());
for (auto entry : freqman_db) {
// Filter by entry type.
if (entry.type == freqman_type::Unknown ||
(entry.type == freqman_type::Single && !options.load_freqs) ||
(entry.type == freqman_type::Range && !options.load_ranges) ||
(entry.type == freqman_type::HamRadio && !options.load_hamradios)) {
continue;
}
// Use previous entry's mod/band if current's aren't set.
if (!db.empty()) {
if (is_invalid(entry.modulation))
entry.modulation = db.back()->modulation;
if (is_invalid(entry.bandwidth))
entry.bandwidth = db.back()->bandwidth;
}
// Move the entry onto the heap and push.
db.push_back(std::make_unique<freqman_entry>(std::move(entry)));
// Limit to max_entries when specified.
if (options.max_entries > 0 && db.size() >= options.max_entries)
break;
}
db.shrink_to_fit();
return true;
}
bool is_valid(const freqman_entry& entry) {
// No valid frequency combination was set.
if (entry.type == freqman_type::Unknown)
return false;
// Frequency A must be set for all types
if (entry.frequency_a == 0)
return false;
// Frequency B must be set for type Range or Ham Radio
if (entry.type == freqman_type::Range || entry.type == freqman_type::HamRadio) {
if (entry.frequency_b == 0)
return false;
}
// Ranges should have frequencies A <= B.
if (entry.type == freqman_type::Range) {
if (entry.frequency_a > entry.frequency_b)
return false;
}
// TODO: Consider additional validation:
// - Tone only on HamRadio.
// - Step only on Range
// - Fail on failed parse_int.
// - Fail if bandwidth set before modulation.
return true;
}
/* FreqmanDB ***********************************/
bool FreqmanDB::open(const std::filesystem::path& path, bool create) {
auto result = FileWrapper::open(path, create);
if (!result)
return false;
wrapper_ = *std::move(result);
return true;
}
void FreqmanDB::close() {
wrapper_.reset();
}
freqman_entry FreqmanDB::operator[](Index index) const {
auto length = wrapper_->line_length(index);
auto line_text = wrapper_->get_text(index, 0, length);
if (line_text) {
freqman_entry entry;
if (parse_freqman_entry(*line_text, entry))
return entry;
else if (read_raw_) {
entry.type = freqman_type::Raw;
entry.description = trim(*line_text);
return entry;
}
}
return {};
}
void FreqmanDB::insert_entry(Index index, const freqman_entry& entry) {
index = clip<uint32_t>(index, 0u, entry_count());
wrapper_->insert_line(index);
replace_entry(index, entry);
}
void FreqmanDB::append_entry(const freqman_entry& entry) {
insert_entry(entry_count(), entry);
}
void FreqmanDB::replace_entry(Index index, const freqman_entry& entry) {
auto range = wrapper_->line_range(index);
if (!range)
return;
// Don't overwrite the '\n'.
range->end--;
wrapper_->replace_range(*range, to_freqman_string(entry));
}
void FreqmanDB::delete_entry(Index index) {
wrapper_->delete_line(index);
}
bool FreqmanDB::delete_entry(const freqman_entry& entry) {
auto it = find_entry(entry);
if (it == end())
return false;
delete_entry(it.index());
return true;
}
FreqmanDB::iterator FreqmanDB::find_entry(const freqman_entry& entry) {
return find_entry([&entry](const auto& other) {
return entry == other;
});
}
uint32_t FreqmanDB::entry_count() const {
// FileWrapper always presents a single line even for empty files.
return empty() ? 0u : wrapper_->line_count();
}
bool FreqmanDB::empty() const {
// FileWrapper always presents a single line even for empty files.
// A DB is only really empty if the file size is 0.
return !wrapper_ || wrapper_->size() == 0;
}