262 lines
6.2 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_ook.hpp"
#include "portapack_shared_memory.hpp"
#include "sine_table_int8.hpp"
#include "event_m4.hpp"
#include <cstdint>
inline void OOKProcessor::write_sample(const buffer_c8_t& buffer, uint8_t bit_value, size_t i) {
int8_t re, im;
if (bit_value) {
phase = (phase + 200); // What ?
sphase = phase + (64 << 18);
re = (sine_table_i8[(sphase & 0x03FC0000) >> 18]);
im = (sine_table_i8[(phase & 0x03FC0000) >> 18]);
} else {
re = 0;
im = 0;
}
buffer.p[i] = {re, im};
}
bool OOKProcessor::scan_init(unsigned int order) {
if (order > MAX_DE_BRUIJN_ORDER)
return false;
scan_done = false;
scan_progress = 0;
k = 0;
idx = 1;
duval_symbols = 2; // 2 for binary, 3 for ternary encoders
duval_length = 0;
duval_bit = 0;
duval_sample_bit = 0;
duval_symbol = 0;
memset(v, 0, sizeof(v));
return true;
}
bool OOKProcessor::scan_encode(const buffer_c8_t& buffer, size_t& buf_ptr) {
// encode data: 0 = 1000, 1 = 1110
// @TODO: make this user-configurable
const uint8_t sym[] = { 0b0001, 0b0111 };
constexpr auto symbol_length = 4;
// iterate over every symbol in the sequence and convert it to bits with required bitrate
for (; duval_bit < duval_length; duval_bit++) {
auto val = v_tmp[duval_bit];
for (; duval_symbol < symbol_length; duval_symbol++) {
auto s = sym[val] & (1 << duval_symbol);
for (; duval_sample_bit < samples_per_bit; duval_sample_bit++) {
if (buf_ptr >= buffer.count) {
// buffer is full - continue next time
txprogress_message.done = false;
txprogress_message.progress = scan_progress++;
shared_memory.application_queue.push(txprogress_message);
return false;
}
write_sample(buffer, s, buf_ptr++);
}
duval_sample_bit = 0;
}
duval_symbol = 0;
}
duval_bit = 0;
return true;
}
inline size_t OOKProcessor::duval_algo_step() {
size_t buf_ptr = 0;
const unsigned int w = de_bruijn_length;
// Duval's algorithm for generating de Bruijn sequence
while (idx) {
if (w % idx == 0) {
for (unsigned int k = 0; k < idx; k++)
v_tmp[buf_ptr++] = v[k];
k = 0;
}
for (unsigned int j = 0; j < w - idx; j++)
v[idx + j] = v[j];
for (idx = w; (idx > 0) && (v[idx - 1] >= duval_symbols - 1); idx--) ;
if (idx)
v[idx - 1]++;
if (buf_ptr) {
// we fill at most de_bruijn_length number of elements
return buf_ptr;
}
}
return 0;
}
void OOKProcessor::scan_process(const buffer_c8_t& buffer) {
size_t buf_ptr = 0;
// transmit any leftover bits from previous step
if (!scan_encode(buffer, buf_ptr))
return;
while (1) {
// calculate next chunk of deBruijn sequence
duval_length = duval_algo_step();
if (duval_length == 0) {
// last chunk - done
if (!scan_done) {
txprogress_message.done = true;
shared_memory.application_queue.push(txprogress_message);
}
scan_done = 1;
// clear the remaining buffer in case we have any bytes left
for (size_t i = buf_ptr; i < buffer.count; i++)
buffer.p[i] = { 0, 0 };
break;
}
duval_bit = 0;
duval_sample_bit = 0;
duval_symbol = 0;
// encode the sequence into required format
if (!scan_encode(buffer, buf_ptr))
break;
}
}
void OOKProcessor::execute(const buffer_c8_t& buffer) {
// This is called at 2.28M/2048 = 1113Hz
if (!configured) return;
if (de_bruijn_length) {
scan_process(buffer);
return;
}
for (size_t i = 0; i < buffer.count; i++) {
// Synthesis at 2.28M/10 = 228kHz
if (!s) {
s = 10 - 1;
if (sample_count >= samples_per_bit) {
if (configured) {
if (bit_pos >= length) {
// End of data
if (pause_counter == 0) {
pause_counter = pause;
cur_bit = 0;
} else if (pause_counter == 1) {
if (repeat_counter < repeat) {
// Repeat
cur_bit = shared_memory.bb_data.data[0] & 0x80;
txprogress_message.progress = repeat_counter + 1;
txprogress_message.done = false;
shared_memory.application_queue.push(txprogress_message);
bit_pos = 1;
repeat_counter++;
} else {
// Stop
cur_bit = 0;
txprogress_message.done = true;
shared_memory.application_queue.push(txprogress_message);
configured = false;
}
pause_counter = 0;
} else {
pause_counter--;
}
} else {
cur_bit = (shared_memory.bb_data.data[bit_pos >> 3] << (bit_pos & 7)) & 0x80;
bit_pos++;
}
}
sample_count = 0;
} else {
sample_count++;
}
} else {
s--;
}
write_sample(buffer, cur_bit, i);
}
}
void OOKProcessor::on_message(const Message* const p) {
const auto message = *reinterpret_cast<const OOKConfigureMessage*>(p);
if (message.id == Message::ID::OOKConfigure) {
configured = false;
repeat = message.repeat - 1;
length = message.stream_length;
pause = message.pause_symbols + 1;
de_bruijn_length = message.de_bruijn_length;
samples_per_bit = message.samples_per_bit;
if (!length && !samples_per_bit) {
// shutdown
return;
}
if (de_bruijn_length) {
if (!scan_init(de_bruijn_length))
return;
} else {
samples_per_bit /= 10;
}
pause_counter = 0;
s = 0;
sample_count = samples_per_bit;
repeat_counter = 0;
bit_pos = 0;
cur_bit = 0;
txprogress_message.progress = 0;
txprogress_message.done = false;
configured = true;
}
}
int main() {
EventDispatcher event_dispatcher { std::make_unique<OOKProcessor>() };
event_dispatcher.run();
return 0;
}