jLynx 033c4e9a5b
Formatted code (#1007)
* Updated style

* Updated files

* fixed new line

* Updated spacing

* File fix WIP

* Updated to clang 13

* updated comment style

* Removed old comment code
2023-05-19 08:16:05 +12:00

148 lines
6.7 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef __SINE_TABLE_H__
#define __SINE_TABLE_H__
// TODO: Including only for pi. Need separate math.hpp...
#include "complex.hpp"
#include <array>
#include <cmath>
/*
import numpy
length = 256
w = numpy.arange(length, dtype=numpy.float64) * (2 * numpy.pi / length)
v = numpy.sin(w)
print(v)
*/
constexpr uint16_t sine_table_f32_period = 256;
// periode is 256 . means sine_table_f32[0]= sine_table_f32[0+256], sine_table_f32[1]=sine_table_f32[1+256] (those two added manualy)
// Then table has 258 values ,256:[0,..255] + [256] and [257], those two are used when we interpolate[255] with [255+1], and [256] with [256+1]
// [256] index is needed in the function sin_f32() when we are inputing very small radian values , example , sin_f32((-1e-14) in radians)
static constexpr std::array<float, sine_table_f32_period + 2> sine_table_f32{
0.00000000e+00, 2.45412285e-02, 4.90676743e-02,
7.35645636e-02, 9.80171403e-02, 1.22410675e-01,
1.46730474e-01, 1.70961889e-01, 1.95090322e-01,
2.19101240e-01, 2.42980180e-01, 2.66712757e-01,
2.90284677e-01, 3.13681740e-01, 3.36889853e-01,
3.59895037e-01, 3.82683432e-01, 4.05241314e-01,
4.27555093e-01, 4.49611330e-01, 4.71396737e-01,
4.92898192e-01, 5.14102744e-01, 5.34997620e-01,
5.55570233e-01, 5.75808191e-01, 5.95699304e-01,
6.15231591e-01, 6.34393284e-01, 6.53172843e-01,
6.71558955e-01, 6.89540545e-01, 7.07106781e-01,
7.24247083e-01, 7.40951125e-01, 7.57208847e-01,
7.73010453e-01, 7.88346428e-01, 8.03207531e-01,
8.17584813e-01, 8.31469612e-01, 8.44853565e-01,
8.57728610e-01, 8.70086991e-01, 8.81921264e-01,
8.93224301e-01, 9.03989293e-01, 9.14209756e-01,
9.23879533e-01, 9.32992799e-01, 9.41544065e-01,
9.49528181e-01, 9.56940336e-01, 9.63776066e-01,
9.70031253e-01, 9.75702130e-01, 9.80785280e-01,
9.85277642e-01, 9.89176510e-01, 9.92479535e-01,
9.95184727e-01, 9.97290457e-01, 9.98795456e-01,
9.99698819e-01, 1.00000000e+00, 9.99698819e-01,
9.98795456e-01, 9.97290457e-01, 9.95184727e-01,
9.92479535e-01, 9.89176510e-01, 9.85277642e-01,
9.80785280e-01, 9.75702130e-01, 9.70031253e-01,
9.63776066e-01, 9.56940336e-01, 9.49528181e-01,
9.41544065e-01, 9.32992799e-01, 9.23879533e-01,
9.14209756e-01, 9.03989293e-01, 8.93224301e-01,
8.81921264e-01, 8.70086991e-01, 8.57728610e-01,
8.44853565e-01, 8.31469612e-01, 8.17584813e-01,
8.03207531e-01, 7.88346428e-01, 7.73010453e-01,
7.57208847e-01, 7.40951125e-01, 7.24247083e-01,
7.07106781e-01, 6.89540545e-01, 6.71558955e-01,
6.53172843e-01, 6.34393284e-01, 6.15231591e-01,
5.95699304e-01, 5.75808191e-01, 5.55570233e-01,
5.34997620e-01, 5.14102744e-01, 4.92898192e-01,
4.71396737e-01, 4.49611330e-01, 4.27555093e-01,
4.05241314e-01, 3.82683432e-01, 3.59895037e-01,
3.36889853e-01, 3.13681740e-01, 2.90284677e-01,
2.66712757e-01, 2.42980180e-01, 2.19101240e-01,
1.95090322e-01, 1.70961889e-01, 1.46730474e-01,
1.22410675e-01, 9.80171403e-02, 7.35645636e-02,
4.90676743e-02, 2.45412285e-02, 1.22464680e-16,
-2.45412285e-02, -4.90676743e-02, -7.35645636e-02,
-9.80171403e-02, -1.22410675e-01, -1.46730474e-01,
-1.70961889e-01, -1.95090322e-01, -2.19101240e-01,
-2.42980180e-01, -2.66712757e-01, -2.90284677e-01,
-3.13681740e-01, -3.36889853e-01, -3.59895037e-01,
-3.82683432e-01, -4.05241314e-01, -4.27555093e-01,
-4.49611330e-01, -4.71396737e-01, -4.92898192e-01,
-5.14102744e-01, -5.34997620e-01, -5.55570233e-01,
-5.75808191e-01, -5.95699304e-01, -6.15231591e-01,
-6.34393284e-01, -6.53172843e-01, -6.71558955e-01,
-6.89540545e-01, -7.07106781e-01, -7.24247083e-01,
-7.40951125e-01, -7.57208847e-01, -7.73010453e-01,
-7.88346428e-01, -8.03207531e-01, -8.17584813e-01,
-8.31469612e-01, -8.44853565e-01, -8.57728610e-01,
-8.70086991e-01, -8.81921264e-01, -8.93224301e-01,
-9.03989293e-01, -9.14209756e-01, -9.23879533e-01,
-9.32992799e-01, -9.41544065e-01, -9.49528181e-01,
-9.56940336e-01, -9.63776066e-01, -9.70031253e-01,
-9.75702130e-01, -9.80785280e-01, -9.85277642e-01,
-9.89176510e-01, -9.92479535e-01, -9.95184727e-01,
-9.97290457e-01, -9.98795456e-01, -9.99698819e-01,
-1.00000000e+00, -9.99698819e-01, -9.98795456e-01,
-9.97290457e-01, -9.95184727e-01, -9.92479535e-01,
-9.89176510e-01, -9.85277642e-01, -9.80785280e-01,
-9.75702130e-01, -9.70031253e-01, -9.63776066e-01,
-9.56940336e-01, -9.49528181e-01, -9.41544065e-01,
-9.32992799e-01, -9.23879533e-01, -9.14209756e-01,
-9.03989293e-01, -8.93224301e-01, -8.81921264e-01,
-8.70086991e-01, -8.57728610e-01, -8.44853565e-01,
-8.31469612e-01, -8.17584813e-01, -8.03207531e-01,
-7.88346428e-01, -7.73010453e-01, -7.57208847e-01,
-7.40951125e-01, -7.24247083e-01, -7.07106781e-01,
-6.89540545e-01, -6.71558955e-01, -6.53172843e-01,
-6.34393284e-01, -6.15231591e-01, -5.95699304e-01,
-5.75808191e-01, -5.55570233e-01, -5.34997620e-01,
-5.14102744e-01, -4.92898192e-01, -4.71396737e-01,
-4.49611330e-01, -4.27555093e-01, -4.05241314e-01,
-3.82683432e-01, -3.59895037e-01, -3.36889853e-01,
-3.13681740e-01, -2.90284677e-01, -2.66712757e-01,
-2.42980180e-01, -2.19101240e-01, -1.95090322e-01,
-1.70961889e-01, -1.46730474e-01, -1.22410675e-01,
-9.80171403e-02, -7.35645636e-02, -4.90676743e-02,
-2.45412285e-02, 0.00000000e+00, 2.45412285e-02};
inline float sin_f32(const float w) {
const float x = w / (2 * pi); // normalization
const float x_frac = x - std::floor(x); // [0, 1]
const float n = x_frac * sine_table_f32_period;
const uint16_t n_int = static_cast<uint16_t>(n);
const float n_frac = n - n_int;
const float p0 = sine_table_f32[n_int];
const float p1 = sine_table_f32[n_int + 1];
const float diff = p1 - p0;
const float result = p0 + n_frac * diff; // linear interpolation
return result;
}
#endif /*__SINE_TABLE_H__*/