2024-08-28 11:32:24 +02:00

821 lines
22 KiB
C++

/*
Copyright (C) 2024 jLynx.
*
This file is part of PortaPack.
*
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
*
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.
*/
#include "max17055.hpp"
#include "utility.hpp"
#include <cstring>
#include <algorithm>
#include <cstdint>
namespace battery {
namespace max17055 {
void MAX17055::init() {
if (!detected_) {
detected_ = detect();
}
if (detected_) { // check again if it is detected
config();
setHibCFG(0x0000);
// Design Capacity Register
setDesignCapacity(__MAX17055_Design_Capacity__);
// ModelCfg Register
setModelCfg(__MAX17055_Battery_Model__);
// IChgTerm Register
setChargeTerminationCurrent(__MAX17055_Termination_Current__);
// VEmpty Register
setEmptyVoltage(__MAX17055_Empty_Voltage__);
// VRecovery Register
setRecoveryVoltage(__MAX17055_Recovery_Voltage__);
// Set Minimum Voltage
setMinVoltage(__MAX17055_Min_Voltage__);
// Set Maximum Voltage
setMaxVoltage(__MAX17055_Max_Voltage__);
// Set Maximum Current
setMaxCurrent(__MAX17055_Max_Current__);
// Set Minimum SOC
setMinSOC(__MAX17055_Min_SOC__);
// Set Maximum SOC
setMaxSOC(__MAX17055_Max_SOC__);
// Set Minimum Temperature
setMinTemperature(__MAX17055_Min_Temperature__);
// Set Maximum Temperature
setMaxTemperature(__MAX17055_Max_Temperature__);
// Clear Bits
statusClear();
}
}
bool MAX17055::detect() {
uint8_t _MAX17055_Data[2];
// Get Data from IC
if (readMultipleRegister(0x00, _MAX17055_Data, 2, false)) {
detected_ = true;
return true;
}
detected_ = false;
return false;
}
bool bitRead(uint8_t value, uint8_t bit) {
return (value >> bit) & 0x01;
}
void bitSet(uint16_t& value, uint8_t bit) {
value |= (1 << bit);
}
void bitSet(uint8_t& value, uint8_t bit) {
value |= (1 << bit);
}
void bitClear(uint16_t& value, uint8_t bit) {
value &= ~(1 << bit);
}
uint16_t MAX17055::read_register(const uint8_t reg) {
const std::array<uint8_t, 1> tx{reg};
std::array<uint8_t, 2> rx{0x00, 0x00};
bus.transmit(bus_address, tx.data(), tx.size());
bus.receive(bus_address, rx.data(), rx.size());
// Combine the two bytes into a 16-bit value
// little-endian format (LSB first)
return static_cast<uint16_t>((rx[1] << 8) | rx[0]);
}
bool MAX17055::write_register(const uint8_t reg, const uint16_t value) {
std::array<uint8_t, 3> tx;
tx[0] = reg;
tx[1] = value & 0xFF; // Low byte
tx[2] = (value >> 8) & 0xFF; // High byte
bool success = bus.transmit(bus_address, tx.data(), tx.size());
return success;
}
bool MAX17055::readMultipleRegister(uint8_t reg, uint8_t* data, uint8_t length, bool endTransmission) {
if (bus.transmit(bus_address, &reg, 1)) {
if (bus.receive(bus_address, data, length)) {
if (endTransmission) {
// bus.stop(); // Testing if we need this line
// Perform any necessary end transmission actions
// For example, you can use bus.endTransmission()
}
return true;
}
}
return false;
}
bool MAX17055::writeMultipleRegister(uint8_t reg, const uint8_t* data, uint8_t length) {
uint8_t buffer[length + 1];
buffer[0] = reg;
memcpy(buffer + 1, data, length);
if (bus.transmit(bus_address, buffer, length + 1)) {
// Perform any necessary end transmission actions
// For example, you can use bus.endTransmission()
return true;
}
return false;
}
void MAX17055::getBatteryInfo(uint8_t& valid_mask, uint8_t& batteryPercentage, uint16_t& voltage, int32_t& current) {
if (detected_) {
uint16_t status = 0;
// Read Status Register
readMultipleRegister(0x00, (uint8_t*)&status, 2, false);
voltage = averageVoltage();
if ((status == 0 && voltage == 0) || (status == 0x0002 && voltage == 3600) || (status == 0x0002 && voltage == 0)) {
valid_mask = 0;
return;
}
batteryPercentage = stateOfCharge();
current = instantCurrent();
valid_mask = 7; // BATT_VALID_VOLTAGE + CURRENT + PERCENT
} else {
// let's indicate the data is wrong. ui will handle this by display UNK values.
valid_mask = 0;
}
}
bool MAX17055::setEmptyVoltage(uint16_t _Empty_Voltage) {
// Set Voltage Value
uint16_t _Raw_Voltage = ((uint16_t)((uint16_t)_Empty_Voltage * 100) << 7) & 0b1111111110000000;
// Define Data Variable
uint8_t MAX17055_RAW_Data[2];
// Handle Data
MAX17055_RAW_Data[1] = (uint8_t)(_Raw_Voltage >> 8);
MAX17055_RAW_Data[0] = (uint8_t)(_Raw_Voltage & 0x00FF);
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0x3A, MAX17055_Current_Data, 2, true);
// Clear Current Value
MAX17055_Current_Data[0] &= 0b01111111;
MAX17055_Current_Data[1] &= 0b00000000;
// Define Data Variable
uint8_t MAX17055_Handle_Data[2];
// Handle Data
MAX17055_Handle_Data[0] = MAX17055_Current_Data[0] | MAX17055_RAW_Data[0];
MAX17055_Handle_Data[1] = MAX17055_Current_Data[1] | MAX17055_RAW_Data[1];
// Set Register
bool _Result = writeMultipleRegister(0x3A, MAX17055_Handle_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setRecoveryVoltage(uint16_t _Recovery_Voltage) {
// Handle Value
_Recovery_Voltage = _Recovery_Voltage * 1000 / 40;
// Set Voltage Value
uint16_t _Raw_Voltage = ((uint16_t)_Recovery_Voltage);
// Define Data Variable
uint8_t MAX17055_RAW_Data[2];
// Handle Data
MAX17055_RAW_Data[1] = (uint8_t)(_Raw_Voltage >> 8);
MAX17055_RAW_Data[0] = (uint8_t)(_Raw_Voltage & 0x00FF);
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0x3A, MAX17055_Current_Data, 2, true);
// Clear Current Value
MAX17055_Current_Data[0] &= 0b10000000;
MAX17055_Current_Data[1] &= 0b11111111;
// Define Data Variable
uint8_t MAX17055_Handle_Data[2];
// Handle Data
MAX17055_Handle_Data[0] = MAX17055_Current_Data[0] | MAX17055_RAW_Data[0];
MAX17055_Handle_Data[1] = MAX17055_Current_Data[1] | MAX17055_RAW_Data[1];
// Set Register
bool _Result = writeMultipleRegister(0x3A, MAX17055_Handle_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setMinVoltage(uint16_t _Minimum_Voltage) {
// Set Voltage Value
uint8_t _Raw_Voltage = (uint8_t)(_Minimum_Voltage * 1000 / 20);
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0x01, MAX17055_Current_Data, 2, true);
// Set Voltage Value
MAX17055_Current_Data[0] = _Raw_Voltage;
// Set Register
bool _Result = writeMultipleRegister(0x01, MAX17055_Current_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setMaxVoltage(uint16_t _Maximum_Voltage) {
// Set Voltage Value
uint8_t _Raw_Voltage = (uint8_t)(_Maximum_Voltage * 1000 / 20);
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0x01, MAX17055_Current_Data, 2, true);
// Set Voltage Value
MAX17055_Current_Data[1] = _Raw_Voltage;
// Set Register
bool _Result = writeMultipleRegister(0x01, MAX17055_Current_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setMaxCurrent(uint16_t _Maximum_Current) {
// Set Current Value
uint8_t _Raw_Current = (uint8_t)(_Maximum_Current * 1000 / 40);
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0xB4, MAX17055_Current_Data, 2, true);
// Set Current Value
MAX17055_Current_Data[1] = _Raw_Current;
// Set Register
bool _Result = writeMultipleRegister(0xB4, MAX17055_Current_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setChargeTerminationCurrent(uint16_t _Charge_Termination_Current) {
// Handle Raw Data
uint16_t _RAW_Data = (uint16_t)(_Charge_Termination_Current * 1000000 * __MAX17055_Resistor__ / 1.5625);
// Declare Default Data Array
uint8_t _Data[2];
// Set Data Low/High Byte
_Data[0] = ((_RAW_Data & (uint16_t)0x00FF));
_Data[1] = ((_RAW_Data & (uint16_t)0xFF00) >> 8);
// Set Register
bool _Result = writeMultipleRegister(0x1E, _Data, 2);
// End Function
return _Result;
}
bool MAX17055::setDesignCapacity(const uint16_t _Capacity) {
// Set Raw
uint16_t _Raw_Cap = (uint16_t)_Capacity * 2;
// Declare Default Data Array
uint8_t _Data[2];
// Set Data Low/High Byte
_Data[0] = ((_Raw_Cap & (uint16_t)0x00FF));
_Data[1] = ((_Raw_Cap & (uint16_t)0xFF00) >> 8);
// Set Register
bool _Result = writeMultipleRegister(0x18, _Data, 2);
// End Function
return _Result;
}
bool MAX17055::setFullCapRep(const uint16_t _Capacity) {
// Set Raw
uint16_t _Raw_Cap = (uint16_t)_Capacity * 2;
// Declare Default Data Array
uint8_t _Data[2];
// Set Data Low/High Byte
_Data[0] = ((_Raw_Cap & (uint16_t)0x00FF));
_Data[1] = ((_Raw_Cap & (uint16_t)0xFF00) >> 8);
// Set Register
bool _Result = writeMultipleRegister(0x10, _Data, 2);
// End Function
return _Result;
}
bool MAX17055::setFullCapNom(const uint16_t _Capacity) {
// Set Raw
uint16_t _Raw_Cap = (uint16_t)_Capacity * 2;
// Declare Default Data Array
uint8_t _Data[2];
// Set Data Low/High Byte
_Data[0] = ((_Raw_Cap & (uint16_t)0x00FF));
_Data[1] = ((_Raw_Cap & (uint16_t)0xFF00) >> 8);
// Set Register
bool _Result = writeMultipleRegister(0x23, _Data, 2);
// End Function
return _Result;
}
bool MAX17055::setRepCap(const uint16_t _Capacity) {
// Set Raw
uint16_t _Raw_Cap = (uint16_t)_Capacity * 2;
// Declare Default Data Array
uint8_t _Data[2];
// Set Data Low/High Byte
_Data[0] = ((_Raw_Cap & (uint16_t)0x00FF));
_Data[1] = ((_Raw_Cap & (uint16_t)0xFF00) >> 8);
// Set Register
bool _Result = writeMultipleRegister(0x05, _Data, 2);
// End Function
return _Result;
}
bool MAX17055::setMinSOC(uint8_t _Minimum_SOC) {
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0x03, MAX17055_Current_Data, 2, true);
// Scale Value
uint8_t _MinSOC = (_Minimum_SOC / 100) * 255;
// Set Voltage Value
MAX17055_Current_Data[0] = _MinSOC;
// Set Register
bool _Result = writeMultipleRegister(0x03, MAX17055_Current_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setMaxSOC(uint8_t _Maximum_SOC) {
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0x03, MAX17055_Current_Data, 2, true);
// Scale Value
uint8_t _MaxSOC = (_Maximum_SOC / 100) * 255;
// Set Voltage Value
MAX17055_Current_Data[1] = _MaxSOC;
// Set Register
bool _Result = writeMultipleRegister(0x03, MAX17055_Current_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setMinTemperature(uint8_t _Minimum_Temperature) {
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0x02, MAX17055_Current_Data, 2, true);
// Set Voltage Value
MAX17055_Current_Data[0] = _Minimum_Temperature;
// Set Register
bool _Result = writeMultipleRegister(0x02, MAX17055_Current_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setMaxTemperature(uint8_t _Maximum_Temperature) {
// Define Data Variable
uint8_t MAX17055_Current_Data[2];
// Read Current Register
readMultipleRegister(0x02, MAX17055_Current_Data, 2, true);
// Set Voltage Value
MAX17055_Current_Data[1] = _Maximum_Temperature;
// Set Register
bool _Result = writeMultipleRegister(0x02, MAX17055_Current_Data, 2);
// End Function
return _Result;
}
bool MAX17055::setModelCfg(const uint8_t _Model_ID) {
// Declare Variable
uint16_t _Data_Set = 0x00;
// Set Charge Voltage
bitSet(_Data_Set, 10);
// Set Battery Model
if (_Model_ID == 0) {
bitClear(_Data_Set, 4);
bitClear(_Data_Set, 5);
bitClear(_Data_Set, 6);
bitClear(_Data_Set, 7);
}
if (_Model_ID == 2) {
bitClear(_Data_Set, 4);
bitSet(_Data_Set, 5);
bitClear(_Data_Set, 6);
bitClear(_Data_Set, 7);
}
if (_Model_ID == 6) {
bitClear(_Data_Set, 4);
bitSet(_Data_Set, 5);
bitSet(_Data_Set, 6);
bitClear(_Data_Set, 7);
}
// Declare Default Data Array
uint8_t _Data[2];
// Set Data Low/High Byte
_Data[0] = ((_Data_Set & (uint16_t)0x00FF));
_Data[1] = ((_Data_Set & (uint16_t)0xFF00) >> 8);
// Set Register
bool _Result = writeMultipleRegister(0xDB, _Data, 2);
// End Function
return _Result;
}
bool MAX17055::setHibCFG(const uint16_t _Config) {
// Declare Default Data Array
uint8_t _Data[2];
// Set Data Low/High Byte
_Data[0] = ((_Config & (uint16_t)0x00FF));
_Data[1] = ((_Config & (uint16_t)0xFF00) >> 8);
// Set Register
bool _Result = writeMultipleRegister(0xBA, _Data, 2);
// End Function
return _Result;
}
void MAX17055::config(void) {
// Declare Default Data Array
uint8_t _Config1[2];
uint8_t _Config2[2];
// Set Default Data
_Config1[0] = 0b00000000;
_Config1[1] = 0b00000000;
_Config2[0] = 0b00011000;
_Config2[1] = 0b00000110;
// Set Configuration bits [Config1]
if (MAX17055_Ber) bitSet(_Config1[0], 0);
if (MAX17055_Bei) bitSet(_Config1[0], 1);
if (MAX17055_Aen) bitSet(_Config1[0], 2);
if (MAX17055_FTHRM) bitSet(_Config1[0], 3);
if (MAX17055_ETHRM) bitSet(_Config1[0], 4);
if (MAX17055_COMMSH) bitSet(_Config1[0], 6);
if (MAX17055_SHDN) bitSet(_Config1[0], 7);
if (MAX17055_Tex) bitSet(_Config1[1], 0);
if (MAX17055_Ten) bitSet(_Config1[1], 1);
if (MAX17055_AINSH) bitSet(_Config1[1], 2);
if (MAX17055_IS) bitSet(_Config1[1], 3);
if (MAX17055_VS) bitSet(_Config1[1], 4);
if (MAX17055_TS) bitSet(_Config1[1], 5);
if (MAX17055_SS) bitSet(_Config1[1], 6);
if (MAX17055_TSel) bitSet(_Config1[1], 7);
// Set Configuration bits [Config2]
if (MAX17055_CPMode) bitSet(_Config2[0], 1);
if (MAX17055_LDMDL) bitSet(_Config2[0], 5);
if (MAX17055_TAIrtEN) bitSet(_Config2[0], 6);
if (MAX17055_dSOCen) bitSet(_Config2[0], 7);
if (MAX17055_DPEn) bitSet(_Config2[1], 4);
if (MAX17055_AtRateEn) bitSet(_Config2[1], 5);
// Config1 Setting
writeMultipleRegister(0x1D, _Config1, 2);
writeMultipleRegister(0xBB, _Config2, 2);
}
uint16_t MAX17055::instantVoltage(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x09);
// Calculate Measurement
uint16_t _Value = ((uint32_t)_Measurement_Raw * 1.25 / 16);
// End Function
return _Value;
}
uint16_t MAX17055::averageVoltage(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x19);
// Calculate Measurement
uint16_t _Value = ((uint32_t)_Measurement_Raw * 1.25 / 16);
// End Function
return _Value;
}
uint16_t MAX17055::emptyVoltage(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x3A);
_Measurement_Raw = ((_Measurement_Raw & 0xFF80) >> 7);
// Calculate Measurement
uint16_t _Value = ((uint32_t)_Measurement_Raw * 10);
// End Function
return _Value;
}
uint16_t MAX17055::recoveryVoltage(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x3A);
_Measurement_Raw = (_Measurement_Raw & 0x7F);
// Calculate Measurement
uint16_t _Value = ((uint32_t)_Measurement_Raw * 40);
// End Function
return _Value;
}
int32_t MAX17055::instantCurrent(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x0A);
// Convert to signed int16_t (two's complement)
int32_t _Signed_Raw = static_cast<int16_t>(_Measurement_Raw);
int32_t _Value = (_Signed_Raw * 15625) / (__MAX17055_Resistor__ * 100) / 100000;
// End Function
return _Value;
}
int32_t MAX17055::averageCurrent(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x0B);
// Convert to signed int16_t (two's complement)
int32_t _Signed_Raw = static_cast<int16_t>(_Measurement_Raw);
int32_t _Value = (_Signed_Raw * 15625) / (__MAX17055_Resistor__ * 100) / 100000;
// End Function
return _Value;
}
uint16_t MAX17055::stateOfCharge(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x06); // RepSOC
// Calculate Measurement
uint8_t _Value = (_Measurement_Raw >> 8) & 0xFF;
// End Function
return _Value;
}
uint16_t MAX17055::averageStateOfCharge(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x0E);
// Calculate Measurement
uint16_t _Value = ((uint32_t)_Measurement_Raw * 100 / 256);
// End Function
return _Value;
}
uint16_t MAX17055::instantCapacity(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x05);
// Calculate Data
uint16_t _Value = _Measurement_Raw * 5 / 1000 / __MAX17055_Resistor__;
// End Function
return _Value;
}
uint16_t MAX17055::designCapacity(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x18);
// Calculate Data
uint16_t _Value = _Measurement_Raw * 5 / 1000 / __MAX17055_Resistor__;
// End Function
return _Value;
}
uint16_t MAX17055::fullCapacity(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x35);
// Calculate Data
uint16_t _Value = _Measurement_Raw * 5 / 1000 / __MAX17055_Resistor__;
// End Function
return _Value;
}
uint16_t MAX17055::icTemperature(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x08);
// Declare Variables
bool _Signiture = false;
// Control for Negative Value
if ((_Measurement_Raw >> 12) == 0xF) {
// Calculate Data
_Measurement_Raw = 0xFFFF - _Measurement_Raw;
// Assign Signiture
_Signiture = true;
}
// Calculate Data
uint16_t _Value = ((uint32_t)_Measurement_Raw * 100 / 256);
// Assign Signiture
if (_Signiture) _Value = -_Value;
// End Function
return _Value;
}
uint16_t MAX17055::timeToEmpty(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x11);
// Calculate Data
uint16_t _Value = ((uint32_t)_Measurement_Raw * 5625 / 60 / 60 / 100);
// End Function
return _Value;
}
uint16_t MAX17055::timeToFull(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x20);
// Calculate Data
uint16_t _Value = ((uint32_t)_Measurement_Raw * 5625 / 60 / 60 / 100);
// End Function
return _Value;
}
uint16_t MAX17055::batteryAge(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x07);
// End Function
return _Measurement_Raw;
}
uint16_t MAX17055::chargeCycle(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x17);
// End Function
return _Measurement_Raw;
}
bool MAX17055::statusControl(const uint8_t _Status) {
// Define Data Variable
uint8_t _Status_Register[2] = {0x00, 0x00};
// Read Status Register
readMultipleRegister(0x00, _Status_Register, 2, false);
// Control for Status
if (_Status == MAX17055_POR)
return bitRead(_Status_Register[0], 1);
else if (_Status == MAX17055_IMin)
return bitRead(_Status_Register[0], 2);
else if (_Status == MAX17055_IMax)
return bitRead(_Status_Register[0], 6);
else if (_Status == MAX17055_VMin)
return bitRead(_Status_Register[1], 0);
else if (_Status == MAX17055_VMax)
return bitRead(_Status_Register[1], 4);
else if (_Status == MAX17055_TMin)
return bitRead(_Status_Register[1], 1);
else if (_Status == MAX17055_TMax)
return bitRead(_Status_Register[1], 5);
else if (_Status == MAX17055_SOC_Min)
return bitRead(_Status_Register[1], 2);
else if (_Status == MAX17055_SOC_Max)
return bitRead(_Status_Register[1], 6);
else if (_Status == MAX17055_SOC_Change)
return bitRead(_Status_Register[0], 7);
else if (_Status == MAX17055_Bat_Status)
return bitRead(_Status_Register[0], 3);
else if (_Status == MAX17055_Bat_Insert)
return bitRead(_Status_Register[1], 3);
else if (_Status == MAX17055_Bat_Remove)
return bitRead(_Status_Register[1], 7);
// End Function
return false;
}
void MAX17055::statusClear(void) {
// Define Data Variable
const uint8_t _Status_Register[2] = {0x00, 0x00};
// Write Status Register
writeMultipleRegister(0x00, _Status_Register, 2);
}
uint16_t MAX17055::chargeTerminationCurrent(void) {
// Get Data from IC
uint16_t _Measurement_Raw = read_register(0x1E);
// Calculate Data
uint16_t Value = (((uint32_t)_Measurement_Raw * 1.5625) / __MAX17055_Resistor__);
// End Function
return Value;
}
} /* namespace max17055 */
} // namespace battery