mayhem-firmware/firmware/baseband/proc_btlerx.cpp
Erwin Ried 40531e9230
Ble receiver (#337)
* BLE app

* Update ui_navigation.cpp

Co-authored-by: Furrtek <furrtek@gmail.com>
2020-04-20 06:50:03 +02:00

340 lines
9.2 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
* Copyright (C) 2020 Shao
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_btlerx.hpp"
#include "portapack_shared_memory.hpp"
#include "event_m4.hpp"
void BTLERxProcessor::execute(const buffer_c8_t& buffer) {
if (!configured) return;
// FM demodulation
/*const auto decim_0_out = decim_0.execute(buffer, dst_buffer);
const auto channel = decim_1.execute(decim_0_out, dst_buffer);
feed_channel_stats(channel);
auto audio_oversampled = demod.execute(channel, work_audio_buffer);*/
const auto decim_0_out = decim_0.execute(buffer, dst_buffer);
feed_channel_stats(decim_0_out);
auto audio_oversampled = demod.execute(decim_0_out, work_audio_buffer);
/*std::fill(spectrum.begin(), spectrum.end(), 0);
for(size_t i=0; i<spectrum.size(); i++) {
spectrum[i] += buffer.p[i];
}
const buffer_c16_t buffer_c16 {spectrum.data(),spectrum.size(),buffer.sampling_rate};
feed_channel_stats(buffer_c16);
auto audio_oversampled = demod.execute(buffer_c16, work_audio_buffer);*/
// Audio signal processing
for (size_t c = 0; c < audio_oversampled.count; c++) {
int result;
/*const int32_t sample_int = audio_oversampled.p[c] * 32768.0f;
int32_t current_sample = __SSAT(sample_int, 16);
current_sample /= 128;*/
int32_t current_sample = audio_oversampled.p[c]; //if I directly use this, some results can pass crc but not correct.
rb_head++;
rb_head=(rb_head)%RB_SIZE;
rb_buf[rb_head] = current_sample;
skipSamples = skipSamples - 1;
if (skipSamples<1)
{
int32_t threshold_tmp=0;
for (int c=0;c<8;c++)
{
threshold_tmp = threshold_tmp + (int32_t)rb_buf[(rb_head+c)%RB_SIZE];
}
g_threshold = (int32_t)threshold_tmp/8;
int transitions=0;
if (rb_buf[(rb_head+9)%RB_SIZE] > g_threshold)
{
for (int c=0;c<8;c++)
{
if (rb_buf[(rb_head + c)%RB_SIZE] > rb_buf[(rb_head + c + 1)%RB_SIZE])
transitions = transitions + 1;
}
}
else
{
for (int c=0;c<8;c++)
{
if (rb_buf[(rb_head + c)%RB_SIZE] < rb_buf[(rb_head + c + 1)%RB_SIZE])
transitions = transitions + 1;
}
}
bool packet_detected=false;
//if ( transitions==4 && abs(g_threshold)<15500)
if ( transitions==4)
{
uint8_t packet_data[500];
int packet_length;
uint32_t packet_crc;
uint32_t calced_crc;
uint64_t packet_addr_l;
uint32_t result;
uint8_t crc[3];
uint8_t packet_header_arr[2];
packet_addr_l=0;
for (int i=0;i<4;i++)
{
bool current_bit;
uint8_t byte=0;
for (int c=0;c<8;c++)
{
if (rb_buf[(rb_head + (i+1)*8 + c)%RB_SIZE] > g_threshold)
current_bit = true;
else
current_bit = false;
byte |= current_bit << (7-c);
}
uint8_t byte_temp = (uint8_t) (((byte * 0x0802LU & 0x22110LU) | (byte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
packet_addr_l|=((uint64_t)byte_temp)<<(8*i);
}
channel_number = 38;
for (int t=0;t<2;t++)
{
bool current_bit;
uint8_t byte=0;
for (int c=0;c<8;c++)
{
if (rb_buf[(rb_head + 5*8+t*8 + c)%RB_SIZE] > g_threshold)
current_bit = true;
else
current_bit = false;
byte |= current_bit << (7-c);
}
packet_header_arr[t] = byte;
}
uint8_t byte_temp2 = (uint8_t) (((channel_number * 0x0802LU & 0x22110LU) | (channel_number * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
uint8_t lfsr_1 = byte_temp2 | 2;
int header_length = 2;
int header_counter = 0;
while(header_length--)
{
for(uint8_t i = 0x80; i; i >>= 1)
{
if(lfsr_1 & 0x80)
{
lfsr_1 ^= 0x11;
(packet_header_arr[header_counter]) ^= i;
}
lfsr_1 <<= 1;
}
header_counter = header_counter + 1;
}
if (packet_addr_l==0x8E89BED6)
{
uint8_t byte_temp3 = (uint8_t) (((packet_header_arr[1] * 0x0802LU & 0x22110LU) | (packet_header_arr[1] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
packet_length=byte_temp3&0x3F;
}
else
{
packet_length=0;
}
for (int t=0;t<packet_length+2+3;t++)
{
bool current_bit;
uint8_t byte=0;
for (int c=0;c<8;c++)
{
if (rb_buf[(rb_head + 5*8+t*8 + c)%RB_SIZE] > g_threshold)
current_bit = true;
else
current_bit = false;
byte |= current_bit << (7-c);
}
packet_data[t] = byte;
}
uint8_t byte_temp4 = (uint8_t) (((channel_number * 0x0802LU & 0x22110LU) | (channel_number * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
uint8_t lfsr_2 = byte_temp4 | 2;
int pdu_crc_length = packet_length+2+3;
int pdu_crc_counter = 0;
while(pdu_crc_length--)
{
for(uint8_t i = 0x80; i; i >>= 1)
{
if(lfsr_2 & 0x80)
{
lfsr_2 ^= 0x11;
(packet_data[pdu_crc_counter]) ^= i;
}
lfsr_2 <<= 1;
}
pdu_crc_counter = pdu_crc_counter + 1;
}
if (packet_addr_l==0x8E89BED6)
{
crc[0]=crc[1]=crc[2]=0x55;
}
else
{
crc[0]=crc[1]=crc[2]=0;
}
uint8_t v, t, d, crc_length;
uint32_t crc_result=0;
crc_length = packet_length + 2;
int counter = 0;
while(crc_length--)
{
uint8_t byte_temp5 = (uint8_t) (((packet_data[counter] * 0x0802LU & 0x22110LU) | (packet_data[counter] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
d = byte_temp5;
for(v = 0; v < 8; v++, d >>= 1)
{
t = crc[0] >> 7;
crc[0] <<= 1;
if(crc[1] & 0x80) crc[0] |= 1;
crc[1] <<= 1;
if(crc[2] & 0x80) crc[1] |= 1;
crc[2] <<= 1;
if(t != (d & 1))
{
crc[2] ^= 0x5B;
crc[1] ^= 0x06;
}
}
counter = counter + 1;
}
for (v=0;v<3;v++) crc_result=(crc_result<<8)|crc[v];
calced_crc = crc_result;
packet_crc=0;
for (int c=0;c<3;c++) packet_crc=(packet_crc<<8)|packet_data[packet_length+2+c];
if (packet_addr_l==0x8E89BED6)
//if (packet_crc==calced_crc)
{
uint8_t mac_data[6];
int counter = 0;
for (int i = 7; i >= 2; i--)
{
uint8_t byte_temp6 = (uint8_t) (((packet_data[i] * 0x0802LU & 0x22110LU) | (packet_data[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
//result = byte_temp6;
mac_data[counter] = byte_temp6;
counter = counter + 1;
}
data_message.is_data = false;
data_message.value = 'A';
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[0];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[1];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[2];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[3];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[4];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[5];
shared_memory.application_queue.push(data_message);
data_message.is_data = false;
data_message.value = 'B';
shared_memory.application_queue.push(data_message);
packet_detected = true;
}
else
packet_detected = false;
}
if (packet_detected)
{
skipSamples=20;
}
}
}
}
void BTLERxProcessor::on_message(const Message* const message) {
if (message->id == Message::ID::BTLERxConfigure)
configure(*reinterpret_cast<const BTLERxConfigureMessage*>(message));
}
void BTLERxProcessor::configure(const BTLERxConfigureMessage& message) {
decim_0.configure(taps_200k_wfm_decim_0.taps, 33554432);
decim_1.configure(taps_200k_wfm_decim_1.taps, 131072);
demod.configure(audio_fs, 5000);
configured = true;
}
int main() {
EventDispatcher event_dispatcher { std::make_unique<BTLERxProcessor>() };
event_dispatcher.run();
return 0;
}